forked from CNChTu/Diffusion-SVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_export.py
448 lines (395 loc) · 17.5 KB
/
onnx_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from diffusion_onnx import GaussianDiffusion
from pcmer_onnx import PCmer
import os
import yaml
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import json
import argparse
from torch.nn.utils import weight_norm
parser = argparse.ArgumentParser(description='Onnx Export')
parser.add_argument('--project', type=str, help='Project Name')
args_main = parser.parse_args()
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def load_model_vocoder(
model_path,
device='cpu'):
pat = model_path
config_file = model_path + '/config.yaml'
model_path = model_path + '/model.pt'
with open(config_file, "r") as config:
args = yaml.safe_load(config)
args = DotDict(args)
# load model
model = Unit2Mel(
args.data.encoder_out_channels,
args.model.n_spk,
args.model.use_pitch_aug,
128,
args.model.n_layers,
args.model.n_chans,
args.model.n_hidden,
args.data.encoder_hop_size,
args.data.sampling_rate,
block_size=args.data.block_size)
print(' [Loading] ' + model_path)
ckpt = torch.load(model_path, map_location=torch.device(device))
model.to(device)
model.load_state_dict(ckpt['model'])
model.eval()
naive = None
naive_config_file = pat + '/config_naive.yaml'
naive_path = pat + '/naive.pt'
if os.path.exists(naive_config_file) and os.path.exists(naive_path):
with open(naive_config_file, "r") as naive_config:
naive_args = yaml.safe_load(naive_config)
naive_args = DotDict(naive_args)
naive = Unit2MelNaive(
naive_args.data.encoder_out_channels,
naive_args.model.n_spk,
naive_args.model.use_pitch_aug,
128,
naive_args.model.n_layers,
naive_args.model.n_chans,
use_speaker_encoder=naive_args.model.use_speaker_encoder,
speaker_encoder_out_channels=naive_args.data.speaker_encoder_out_channels,
spec_max=model.decoder.spec_max,
spec_min=model.decoder.spec_min)
ckpt_naive = torch.load(naive_path, map_location=torch.device(device))
naive.to(device)
naive.load_state_dict(ckpt_naive['model'])
naive.eval()
return model, args, naive
class Unit2MelNaive(nn.Module):
def __init__(
self,
input_channel,
n_spk,
use_pitch_aug=False,
out_dims=128,
n_layers=3,
n_chans=256,
n_hidden=None, # 废弃
use_speaker_encoder=False,
speaker_encoder_out_channels=256,
spec_max = 0,
spec_min = 0):
super().__init__()
self.f0_embed = nn.Linear(1, n_chans)
self.volume_embed = nn.Linear(1, n_chans)
self.hubert_channel = input_channel
if use_pitch_aug:
self.aug_shift_embed = nn.Linear(1, n_chans, bias=False)
else:
self.aug_shift_embed = None
self.n_spk = n_spk
self.use_speaker_encoder = use_speaker_encoder
if use_speaker_encoder:
self.spk_embed = nn.Linear(speaker_encoder_out_channels, n_chans, bias=False)
else:
if n_spk is not None and n_spk > 1:
self.spk_embed = nn.Embedding(n_spk, n_chans)
# conv in stack
self.stack = nn.Sequential(
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
nn.GroupNorm(4, n_chans),
nn.LeakyReLU(),
nn.Conv1d(n_chans, n_chans, 3, 1, 1))
# transformer
self.decoder = PCmer(
num_layers=n_layers,
num_heads=8,
dim_model=n_chans,
dim_keys=n_chans,
dim_values=n_chans,
residual_dropout=0.1,
attention_dropout=0.1)
self.norm = nn.LayerNorm(n_chans)
# out
self.n_out = out_dims
self.dense_out = weight_norm(
nn.Linear(n_chans, self.n_out))
self.spec_max = spec_max
self.spec_min = spec_min
self.hidden_size = n_chans
def forward(self, units, mel2ph, f0, volume, g = None):
'''
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
'''
decoder_inp = F.pad(units, [0, 0, 1, 0])
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
x = self.stack(units.transpose(1,2)).transpose(1,2) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
g = g * self.speaker_map # [N, S, B, 1, H]
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
x = x.transpose(1, 2) + g
x = x.transpose(1, 2)
x = self.decoder(x)
x = self.norm(x)
x = self.dense_out(x)
x = (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
return x.transpose(1, 2).unsqueeze(0)
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
spk_dice_offset = 0
self.speaker_map = torch.zeros((self.n_spk,1,1,self.hidden_size))
if self.use_speaker_encoder:
if spk_mix_dict is not None:
assert spk_emb_dict is not None
for k, v in spk_mix_dict.items():
spk_id_torch = spk_emb_dict[str(k)]
spk_id_torch = np.tile(spk_id_torch, (len(units), 1))
spk_id_torch = torch.from_numpy(spk_id_torch).float().to(units.device)
self.speaker_map[spk_dice_offset] = self.spk_embed(spk_id_torch)
spk_dice_offset = spk_dice_offset + 1
else:
if self.n_spk is not None and self.n_spk > 1:
if spk_mix_dict is not None:
for k, v in spk_mix_dict.items():
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
self.speaker_map[spk_dice_offset] = self.spk_embed(spk_id_torch)
spk_dice_offset = spk_dice_offset + 1
self.speaker_map = self.speaker_map.unsqueeze(0)
self.speaker_map = self.speaker_map.detach()
def ExportOnnx(self, project_name=None):
n_frames = 100
hubert = torch.randn((1, n_frames, self.hubert_channel))
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
f0 = torch.randn((1, n_frames))
volume = torch.randn((1, n_frames))
spk_mix = []
spks = {}
if self.n_spk is not None and self.n_spk > 1:
for i in range(self.n_spk):
spk_mix.append(1.0/float(self.n_spk))
spks.update({i:1.0/float(self.n_spk)})
spk_mix = torch.tensor(spk_mix)
spk_mix = spk_mix.repeat(n_frames, 1)
self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
#self.decoder = torch.jit.script(self.decoder)
torch.onnx.export(
self,
(hubert, mel2ph, f0, volume, spk_mix),
f"checkpoints/{project_name}/{project_name}_naive.onnx",
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
output_names=["mel"],
dynamic_axes={
"hubert": [1],
"f0": [1],
"volume": [1],
"mel2ph": [1],
"spk_mix": [0],
},
opset_version=16
)
class Unit2Mel(nn.Module):
def __init__(
self,
input_channel,
n_spk,
use_pitch_aug=False,
out_dims=128,
n_layers=20,
n_chans=384,
n_hidden=256,
hop_size=320,
sampling_rate=44100,
use_speaker_encoder=False,
speaker_encoder_out_channels=256,
block_size=512):
super().__init__()
self.sampling_rate = sampling_rate
self.block_size = block_size
self.hop_size = hop_size
self.hubert_channel = input_channel
self.unit_embed = nn.Linear(input_channel, n_hidden)
self.f0_embed = nn.Linear(1, n_hidden)
self.volume_embed = nn.Linear(1, n_hidden)
if use_pitch_aug:
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
else:
self.aug_shift_embed = None
self.n_spk = n_spk
self.use_speaker_encoder = use_speaker_encoder
if use_speaker_encoder:
self.spk_embed = nn.Linear(speaker_encoder_out_channels, n_hidden, bias=False)
else:
if n_spk is not None and n_spk > 1:
self.spk_embed = nn.Embedding(n_spk, n_hidden)
# diffusion
self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
self.hidden_size = n_hidden
def forward(self, units, mel2ph, f0, volume, g = None):
'''
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
'''
decoder_inp = F.pad(units, [0, 0, 1, 0])
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
g = g * self.speaker_map # [N, S, B, 1, H]
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
x = x.transpose(1, 2) + g
return x
else:
return x.transpose(1, 2)
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
'''
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
'''
spk_dice_offset = 0
self.speaker_map = torch.zeros((self.n_spk,1,1,self.hidden_size))
if self.use_speaker_encoder:
if spk_mix_dict is not None:
assert spk_emb_dict is not None
for k, v in spk_mix_dict.items():
spk_id_torch = spk_emb_dict[str(k)]
spk_id_torch = np.tile(spk_id_torch, (len(units), 1))
spk_id_torch = torch.from_numpy(spk_id_torch).float().to(units.device)
self.speaker_map[spk_dice_offset] = self.spk_embed(spk_id_torch)
spk_dice_offset = spk_dice_offset + 1
else:
if self.n_spk is not None and self.n_spk > 1:
if spk_mix_dict is not None:
for k, v in spk_mix_dict.items():
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
self.speaker_map[spk_dice_offset] = self.spk_embed(spk_id_torch)
spk_dice_offset = spk_dice_offset + 1
self.speaker_map = self.speaker_map.unsqueeze(0)
self.speaker_map = self.speaker_map.detach()
def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
n_frames = 100
hubert = torch.randn((1, n_frames, self.hubert_channel))
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
f0 = torch.randn((1, n_frames))
volume = torch.randn((1, n_frames))
spk_mix = []
spks = {}
if self.n_spk is not None and self.n_spk > 1:
for i in range(self.n_spk):
spk_mix.append(1.0/float(self.n_spk))
spks.update({i:1.0/float(self.n_spk)})
spk_mix = torch.tensor(spk_mix)
spk_mix = spk_mix.repeat(n_frames, 1)
self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
if export_encoder:
torch.onnx.export(
self,
(hubert, mel2ph, f0, volume, spk_mix),
f"checkpoints/{project_name}/{project_name}_encoder.onnx",
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
output_names=["mel_pred"],
dynamic_axes={
"hubert": [1],
"f0": [1],
"volume": [1],
"mel2ph": [1],
"spk_mix": [0],
},
opset_version=16
)
self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
vec_lay = "layer-12" if self.hubert_channel == 768 else "layer-9"
spklist = []
for key in range(self.n_spk):
spklist.append(f"Speaker_{key}")
MoeVSConf = {
"Folder" : f"{project_name}",
"Name" : f"{project_name}",
"Type" : "DiffSvc",
"Rate" : self.sampling_rate,
"Hop" : self.block_size,
"Hubert": f"vec-{self.hubert_channel}-{vec_lay}",
"HiddenSize": self.hubert_channel,
"Characters": spklist,
"Diffusion": True,
"CharaMix": True,
"Volume": True,
"V2" : True,
"Hifigan" : "nsf_hifigan",
"MelBins" : self.decoder.mel_bins,
"MaxStep" : self.decoder.k_step
}
MoeVSConfJson = json.dumps(MoeVSConf)
with open(f"checkpoints/{project_name}.json", 'w') as MoeVsConfFile:
json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
def ExportOnnx(self, project_name=None):
n_frames = 100
hubert = torch.randn((1, n_frames, self.hubert_channel))
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
f0 = torch.randn((1, n_frames))
volume = torch.randn((1, n_frames))
spk_mix = []
spks = {}
if self.n_spk is not None and self.n_spk > 1:
for i in range(self.n_spk):
spk_mix.append(1.0/float(self.n_spk))
spks.update({i:1.0/float(self.n_spk)})
spk_mix = torch.tensor(spk_mix)
orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
torch.onnx.export(
self,
(hubert, mel2ph, f0, volume, spk_mix),
f"{project_name}_encoder.onnx",
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
output_names=["mel_pred"],
dynamic_axes={
"hubert": [1],
"f0": [1],
"volume": [1],
"mel2ph": [1]
},
opset_version=16
)
condition = torch.randn(1,self.decoder.n_hidden,n_frames)
noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
pndm_speedup = torch.LongTensor([100])
K_steps = torch.LongTensor([1000])
self.decoder = torch.jit.script(self.decoder)
self.decoder(condition, noise, pndm_speedup, K_steps)
torch.onnx.export(
self.decoder,
(condition, noise, pndm_speedup, K_steps),
f"{project_name}_diffusion.onnx",
input_names=["condition", "noise", "pndm_speedup", "K_steps"],
output_names=["mel"],
dynamic_axes={
"condition": [2],
"noise": [3],
},
opset_version=16
)
if __name__ == "__main__":
project_name = args_main.project
if project_name is None:
project_name = "ShallowDiffusion"
model_path = f'checkpoints/{project_name}'
model, _, naive = load_model_vocoder(model_path)
if naive is not None:
naive.ExportOnnx(project_name)
# 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)