forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_parametrization.py
150 lines (125 loc) · 6.75 KB
/
test_parametrization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
# Owner(s): ["module: unknown"]
import logging
from torch import nn
from torch.ao.sparsity.sparsifier import utils
from torch.nn.utils import parametrize
import torch
from torch.testing._internal.common_utils import TestCase
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
class ModelUnderTest(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.linear = nn.Linear(16, 16, bias=bias)
self.seq = nn.Sequential(
nn.Linear(16, 16, bias=bias),
nn.Linear(16, 16, bias=bias)
)
# Make sure the weights are not random
self.linear.weight = nn.Parameter(torch.zeros_like(self.linear.weight) + 1.0)
self.seq[0].weight = nn.Parameter(torch.zeros_like(self.seq[0].weight) + 2.0)
self.seq[1].weight = nn.Parameter(torch.zeros_like(self.seq[1].weight) + 3.0)
if bias:
self.linear = nn.Parameter(torch.zeros_like(self.linear.bias) + 10.0)
self.seq[0] = nn.Parameter(torch.zeros_like(self.seq[0].bias) + 20.0)
self.seq[0] = nn.Parameter(torch.zeros_like(self.seq[0].bias) + 30.0)
def forward(self, x):
x = self.linear(x)
x = self.seq(x)
return x
class TestFakeSparsity(TestCase):
def test_masking_logic(self):
model = nn.Linear(16, 16, bias=False)
model.weight = nn.Parameter(torch.eye(16))
x = torch.randn(3, 16)
self.assertEqual(torch.mm(x, torch.eye(16)), model(x))
mask = torch.zeros(16, 16)
sparsity = utils.FakeSparsity(mask)
parametrize.register_parametrization(model, 'weight', sparsity)
x = torch.randn(3, 16)
self.assertEqual(torch.zeros(3, 16), model(x))
def test_weights_parametrized(self):
model = ModelUnderTest(bias=False)
assert not hasattr(model.linear, 'parametrizations')
assert not hasattr(model.seq[0], 'parametrizations')
assert not hasattr(model.seq[1], 'parametrizations')
mask = torch.eye(16)
parametrize.register_parametrization(model.linear, 'weight',
utils.FakeSparsity(mask))
mask = torch.eye(16)
parametrize.register_parametrization(model.seq[0], 'weight',
utils.FakeSparsity(mask))
mask = torch.eye(16)
parametrize.register_parametrization(model.seq[1], 'weight',
utils.FakeSparsity(mask))
assert hasattr(model.linear, 'parametrizations')
assert parametrize.is_parametrized(model.linear, 'weight')
assert hasattr(model.seq[0], 'parametrizations')
assert parametrize.is_parametrized(model.linear, 'weight')
assert hasattr(model.seq[1], 'parametrizations')
assert parametrize.is_parametrized(model.linear, 'weight')
def test_state_dict_preserved(self):
model_save = ModelUnderTest(bias=False)
mask = torch.eye(16)
parametrize.register_parametrization(model_save.linear, 'weight',
utils.FakeSparsity(mask))
mask = torch.eye(16)
parametrize.register_parametrization(model_save.seq[0], 'weight',
utils.FakeSparsity(mask))
mask = torch.eye(16)
parametrize.register_parametrization(model_save.seq[1], 'weight',
utils.FakeSparsity(mask))
state_dict = model_save.state_dict()
model_load = ModelUnderTest(bias=False)
mask = torch.zeros(model_load.linear.weight.shape)
parametrize.register_parametrization(model_load.linear, 'weight',
utils.FakeSparsity(mask))
mask = torch.zeros(model_load.seq[0].weight.shape)
parametrize.register_parametrization(model_load.seq[0], 'weight',
utils.FakeSparsity(mask))
mask = torch.zeros(model_load.seq[1].weight.shape)
parametrize.register_parametrization(model_load.seq[1], 'weight',
utils.FakeSparsity(mask))
# Keep this strict, as we are not loading the 'mask'
model_load.load_state_dict(state_dict, strict=False)
# Check the parametrizations are preserved
assert hasattr(model_load.linear, 'parametrizations')
assert parametrize.is_parametrized(model_load.linear, 'weight')
assert hasattr(model_load.seq[0], 'parametrizations')
assert parametrize.is_parametrized(model_load.linear, 'weight')
assert hasattr(model_load.seq[1], 'parametrizations')
assert parametrize.is_parametrized(model_load.linear, 'weight')
# Check the weigths are preserved
self.assertEqual(model_save.linear.parametrizations['weight'].original,
model_load.linear.parametrizations['weight'].original)
self.assertEqual(model_save.seq[0].parametrizations['weight'].original,
model_load.seq[0].parametrizations['weight'].original)
self.assertEqual(model_save.seq[1].parametrizations['weight'].original,
model_load.seq[1].parametrizations['weight'].original)
# Check the masks are not preserved in the state_dict
# We store the state_dicts in the sparsifier, not in the model itself.
# TODO: Need to find a clean way of exporting the parametrized model
self.assertNotEqual(model_save.linear.parametrizations['weight'][0].mask,
model_load.linear.parametrizations['weight'][0].mask)
self.assertNotEqual(model_save.seq[0].parametrizations['weight'][0].mask,
model_load.seq[0].parametrizations['weight'][0].mask)
self.assertNotEqual(model_save.seq[1].parametrizations['weight'][0].mask,
model_load.seq[1].parametrizations['weight'][0].mask)
def test_jit_trace(self):
model = ModelUnderTest(bias=False)
mask = torch.eye(16)
parametrize.register_parametrization(model.linear, 'weight',
utils.FakeSparsity(mask))
mask = torch.eye(16)
parametrize.register_parametrization(model.seq[0], 'weight',
utils.FakeSparsity(mask))
mask = torch.eye(16)
parametrize.register_parametrization(model.seq[1], 'weight',
utils.FakeSparsity(mask))
# Tracing
example_x = torch.ones(3, 16)
model_trace = torch.jit.trace_module(model, {'forward': example_x})
x = torch.randn(3, 16)
y = model(x)
y_hat = model_trace(x)
self.assertEqual(y_hat, y)