forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_aot_autograd.py
736 lines (582 loc) · 25.1 KB
/
test_aot_autograd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# Owner(s): ["module: dynamo"]
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._dynamo.testing import CompileCounter, rand_strided
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
class AotAutogradFallbackTests(torch._dynamo.test_case.TestCase):
def test_LSTM(self):
# https://github.com/pytorch/torchdynamo/issues/1147
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
def forward(self, permute: torch.Tensor):
self_mod_model_lstm_lstm = self.self_mod_model_lstm_lstm(permute)
return (self_mod_model_lstm_lstm,)
mod = Repro()
aot_mod = torch._dynamo.optimize("aot_eager")(mod)
args = [((92, 4, 64), (1, 5888, 92), torch.float32, "cpu", False)]
args = [
rand_strided(sh, st, dt, dev).requires_grad_(rg)
for (sh, st, dt, dev, rg) in args
]
eager_result = mod(*args)
aot_result = aot_mod(*args)
self.assertTrue(torch._dynamo.testing.same(eager_result, aot_result))
def test_mutation(self):
# https://github.com/pytorch/torchdynamo/issues/1301
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
def test_mutation1(self):
def fn(_stack0: torch.Tensor, diagonal_chunked_attention_scores: torch.Tensor):
getitem = diagonal_chunked_attention_scores[
(
slice(None, None, None),
slice(None, None, None),
slice(None, 256, None),
slice(None, 257, None),
)
]
_stack0[
(
slice(None, None, None),
slice(None, -1, None),
slice(None, None, None),
slice(256, None, None),
)
] = getitem
view = _stack0.view(1, 12, 1024, 513)
return (view,)
x = torch.randn(torch.Size([12, 4, 256, 513]))
y = torch.randn(torch.Size([12, 3, 512, 513]))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
aot_fn(x, y)
def test_negative_testing_mutation(self):
def fn(_stack0: torch.Tensor, diagonal_chunked_attention_scores: torch.Tensor):
getitem = diagonal_chunked_attention_scores[
(
slice(None, None, None),
slice(None, None, None),
slice(None, 256, None),
slice(None, 257, None),
)
]
_stack0 = torch.sin(_stack0)
_stack0[
(
slice(None, None, None),
slice(None, -1, None),
slice(None, None, None),
slice(256, None, None),
)
] = getitem
view = _stack0.view(1, 12, 1024, 513)
return (view,)
x = torch.randn(torch.Size([12, 4, 256, 513]))
y = torch.randn(torch.Size([12, 3, 512, 513]))
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
aot_fn(x, y)
def test_negative_testing(self):
def fn(x, y):
return torch.sin(x).add_(y)
y = torch.randn(4)
x = torch.randn(4)
aot_fn = torch._dynamo.optimize("aot_eager")(fn)
aot_fn(x, y)
def test_call_fn_with_non_const_inputs_aot_safe(self):
class ModuleSpecialFwd(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=20, kernel_size=(5, 5)
)
def _conv_forward(self, x):
return self.conv._conv_forward(x, self.conv.weight, self.conv.bias)
def forward(self, x):
return self._conv_forward(x)
# Init mod
mod = ModuleSpecialFwd()
rx = torch.randn([3, 10, 10])
# Run it for real
real = mod(rx)
# Run it in export
graph, _ = torch._dynamo.export(mod, rx)
# Run exported graph with AOT
self.assertTrue(torch._dynamo.testing.same(real, graph(rx)))
aot_fn = torch._dynamo.optimize("aot_eager")(graph)
aot_fn(rx)
def test_call_fn_with_non_const_inputs_aot_unsafe(self):
class ModuleSpecialFwd(torch.nn.Module):
def _some_bad_fwd(self, param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
def forward(self, x, y):
return self._some_bad_fwd(x, y)
# Init mod
mod = ModuleSpecialFwd()
x = torch.nn.Parameter(torch.randn(4))
y = torch.randn([4])
# Run it for real
real = mod(x, y)
# Run it in export
graph, _ = torch._dynamo.export(mod, x, y)
# Assert equal
self.assertTrue(torch._dynamo.testing.same(real, graph(x, y)))
# Run exported graph with AOT
aot_fn = torch._dynamo.optimize("aot_eager")(graph)
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
def test_call_fn_with_non_const_inputs_aot_unsafe_control_flow(self):
class ModuleSpecialFwd(torch.nn.Module):
def _some_bad_fwd(self, param, y):
if y[0][0] < 3:
return y + param
return param * y
def forward(self, x, y):
a = x * y
a = self._some_bad_fwd(a, a)
b = x + y
return a * b
# Init mod
mod = ModuleSpecialFwd()
x = torch.nn.Parameter(torch.randn([2, 2]))
y = torch.randn([2, 2])
# Run it for real
real = mod(x, y)
# Run it through optimize, with our capturing fn
gms = []
counter = CompileCounter()
def capturing_fn(gm, inputs):
nonlocal gms
gms.append(gm)
return counter(gm, inputs)
optimized_mod = torch._dynamo.optimize(capturing_fn)(mod)
# Assert equal
self.assertTrue(torch._dynamo.testing.same(real, optimized_mod(x, y)))
# Uncomment to reproduce commented out graphs below.
# for gm in gms:
# print("GM CODE", gm.code)
self.assertEqual(counter.frame_count, 4)
self.assertEqual(counter.op_count, 7)
# Graph 1
# def forward(self, x : torch.nn.parameter.Parameter, y : torch.Tensor):
# mul = x * y; x = y = None
# return (mul,)
# BREAK
# Graph 2
# def forward(self, y : torch.Tensor):
# getitem = y[0]; y = None
# getitem_1 = getitem[0]; getitem = None
# lt = getitem_1 < 3; getitem_1 = None
# return (lt,)
# BREAK
# Graph 3
# def forward(self, param : torch.Tensor, y : torch.Tensor):
# add = y + param; y = param = None
# return (add,)
# BREAK
# Graph 4
# def forward(self, _stack0 : torch.Tensor, x : torch.nn.parameter.Parameter, y : torch.Tensor):
# add = x + y; x = y = None
# mul = _stack0 * add; _stack0 = add = None
# return (mul,)
# Run fn with AOT
torch._dynamo.reset()
aot_fn = torch._dynamo.optimize("aot_eager")(optimized_mod)
aot_fn(x, y)
# Note: Dynamo recompilation guarding invalid grad
#
# This test is a spiritual equivalent to test_invalid_requires_grad_fake in test_autodispatch.py
# The point of this test is to invoke aot_autograd in a way that would normally trigger an assertion
# (This is what test_invalid_requires_grad_fake) does. However, the point of this test is to prove
# that we do not hit this asseriton, as dynamo recompiles correctly and protects this condition.
#
# Subnote: The reason for us having test_invalid_requires_grad_fake utilizing fake tenosrs
# is because dynamo sends fake tensors down to aot_autograd.
@patch("torch._functorch.config.debug_assert", True)
def test_requires_grad_fake_via_dynamo_recompiles(self):
class F(torch.nn.Module):
def forward(self, x, y):
return (x + y,)
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
z = torch.randn(3, 3, requires_grad=False)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertExpectedInline(
failure_reason,
"""tensor 'L['y']' requires_grad mismatch. expected requires_grad=1""",
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
def test_double_backward_errors(self):
# Remove this test after we get double backward to actually work
for grad_output in (torch.tensor(1.0, requires_grad=True), None):
x = torch.tensor(1.0, requires_grad=True)
err = "torch.compile with aot_autograd does not currently support double backward"
# The following cases should be equivalent:
# (1) double backward entirely inside compiled function
def f1(x):
y = x.sin().exp()
(gx,) = torch.autograd.grad(
y, x, create_graph=True, grad_outputs=grad_output
)
torch.autograd.grad(gx, x)
return gx
compiled_f1 = torch.compile(backend="aot_eager")(f1)
f1(x)
with self.assertRaisesRegex(RuntimeError, err):
compiled_f1(x)
# (2) the second half of double backward outside compiled function
def f2(x):
y = x.sin().exp()
(gx,) = torch.autograd.grad(
y, x, create_graph=True, grad_outputs=grad_output
)
return gx
compiled_f2 = torch.compile(backend="aot_eager")(f2)
gx = compiled_f2(x)
with self.assertRaisesRegex(RuntimeError, err):
torch.autograd.grad(gx, x)
# (3) double backward entirely outside compiled function
def f3(x):
y = x.sin().exp()
return y
compiled_f3 = torch.compile(backend="aot_eager")(f3)
y = compiled_f3(x)
(gx,) = torch.autograd.grad(
y, x, create_graph=True, grad_outputs=grad_output
)
with self.assertRaisesRegex(RuntimeError, err):
torch.autograd.grad(gx, x)
# create_graph=False
def f4(x):
y = x.sin().exp()
return y
compiled_f4 = torch.compile(backend="aot_eager")(f4)
x = torch.tensor(1.0, requires_grad=True)
y = compiled_f4(x)
(gx,) = torch.autograd.grad(y, x, create_graph=False, grad_outputs=grad_output)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles(self):
class F(torch.nn.Module):
def forward(self, x, y):
x = x.t_()
y = y.t_()
return (x + y,)
x = torch.randn(3, 3, requires_grad=True)
x1, x2, x3, x4 = x.clone(), x.clone(), x.clone(), x.clone()
y = torch.randn(3, 3, requires_grad=True)
y1, y2, y4 = y.clone(), y.clone(), y.clone()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
# Note: to prevent a recompilation between the two calls,
# we need to clone x and y on each use.
# fxy mutates the input's metadata, so otherwise dynamo will end up recompiling.
fxy(x1, y1)
fxy(x2, y2)
self.assertTrue(failure_reason is None)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 1)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxx = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
fxx(x3, x3)
fxx(x4, y4)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['x'] is L['y']""")
@patch("torch._functorch.config.debug_assert", True)
def test_arg_metadata_mutation_on_input_causes_recompile(self):
class F(torch.nn.Module):
def forward(self, a):
a.t_()
return (a * 2,)
a = torch.randn(3, 3, requires_grad=True).clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a)
f(a)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(
failure_reason,
"""tensor 'L['a']' stride mismatch at index 0. expected 3, actual 1""",
)
torch._dynamo.reset()
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args_param_non_tensor_arg(self):
class F(torch.nn.Module):
def __init__(self):
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, a, b, c, d, e, f):
a.t_()
b.t_()
c.t_()
d.t_()
return (a + b + c + d + self.mean) * e * f
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2, a3, a4 = a.clone(), a.clone(), a.clone(), a.clone()
b1, b2, b3, b4 = b.clone(), b.clone(), b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, a1, a1, 2, 2)
f(a2, b2, b2, b2, 2, 2)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['a'] is L['b']""")
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
d3, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a3, b3, c3, c3, 3, 3)
f(a4, b4, c4, d4, 3, 3)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['c'] is L['d']""")
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_with_global(self):
z = None
class F(torch.nn.Module):
def __init__(self):
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, a, b, c, d, e, f):
a.t_()
b.t_()
c.t_()
d.t_()
return (a + b + c + d + z + self.mean) * e * f
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
z = a
a1, a2, a3, a4 = a.clone(), a.clone(), a.clone(), a.clone()
b1, b2, b3, b4 = b.clone(), b.clone(), b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, a1, a1, 2, 2)
f(a2, b2, b2, b2, 2, 2)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['a'] is L['b']""")
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args_param_non_tensor_arg_list(self):
class F(torch.nn.Module):
def __init__(self):
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, e, f, a, b, c, d):
a.t_()
b.t_()
c.t_()
d.t_()
return (a + b + c + d + self.mean) * e[0] * f[0]
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2, a3, a4 = a.clone(), a.clone(), a.clone(), a.clone()
b1, b2, b3, b4 = b.clone(), b.clone(), b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f([3, 2, 1], [4, 5, 6], a1, a1, a1, a1)
f([3, 2, 1], [4, 5, 6], a2, b2, b2, b2)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['a'] is L['b']""")
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
d3, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f([3, 2, 1], [4, 5, 6], a3, b3, c3, c3)
f([3, 2, 1], [4, 5, 6], a4, b4, c4, d4)
self.assertEqual(cc.frame_count, 2)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args_param(self):
class F(torch.nn.Module):
def __init__(self):
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, a, b, c, d):
a.t_()
b.t_()
c.t_()
d.t_()
return a + b + c + d + self.mean
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2, a3, a4 = a.clone(), a.clone(), a.clone(), a.clone()
b1, b2, b3, b4 = b.clone(), b.clone(), b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, a1, a1)
f(a2, b2, b2, b2)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['a'] is L['b']""")
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
d3, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a3, b3, c3, c3)
f(a4, b4, c4, d4)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['c'] is L['d']""")
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args(self):
class F(torch.nn.Module):
def forward(self, a, b, c, d):
a.t_()
b.t_()
c.t_()
d.t_()
return (a + b + c + d,)
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2, a3, a4 = a.clone(), a.clone(), a.clone(), a.clone()
b1, b2, b3, b4 = b.clone(), b.clone(), b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, a1, a1)
f(a2, b2, b2, b2)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['a'] is L['b']""")
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
d3, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a3, b3, c3, c3)
f(a4, b4, c4, d4)
self.assertEqual(cc.frame_count, 2)
self.assertExpectedInline(failure_reason, """L['c'] is L['d']""")
@patch("torch._functorch.config.debug_assert", True)
def test_multiple_aot_autograd_calls_dupe_args(self):
def maybe_dupe_op(x):
y = x + 1
z = x + 2
if x.numel() < 5:
return y, y
else:
return y, z
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF")
lib.define("maybe_dupe_op(Tensor a) -> (Tensor, Tensor)")
lib.impl("maybe_dupe_op", maybe_dupe_op, "CPU")
lib.impl("maybe_dupe_op", maybe_dupe_op, "Meta")
# this is just dealing with the fact that
# aot_module_simplified expects submods to always return tuples/lists
class WrapperModule(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, *args):
out = self.mod(*args)
if isinstance(out, (list, tuple)):
return out
return (out,)
def compile_submod(input_mod, args):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
class WrapperModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.original = input_mod
self.submod = aot_module_simplified(input_mod, args, nop)
def forward(self, *args):
return self.submod(*args)
return WrapperModule()
def test_compile(fx_g, example_inps):
split_gm = torch.fx.passes.split_module.split_module(
fx_g, None, lambda node: 1 if "mul" in str(node) else 0
)
submod_1_inps = split_gm.submod_0(*example_inps)
split_gm.submod_0 = compile_submod(
WrapperModule(split_gm.submod_0), example_inps
)
split_gm.submod_1 = compile_submod(
WrapperModule(split_gm.submod_1), submod_1_inps
)
return split_gm
@torch._dynamo.optimize(test_compile)
def f(a):
b, c = torch.ops.custom.maybe_dupe_op(a)
return (b.mul_(c),)
f(torch.ones(4))
f(torch.ones(6))
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()