|
5 | 5 | "colab": {
|
6 | 6 | "name": "08 Logistic Regression.ipynb",
|
7 | 7 | "provenance": [],
|
8 |
| - "authorship_tag": "ABX9TyOzdICGm/7utO3jg6uo4fdn", |
| 8 | + "authorship_tag": "ABX9TyOu3EEwuHsR/3JTtbVCA2NW", |
9 | 9 | "include_colab_link": true
|
10 | 10 | },
|
11 | 11 | "kernelspec": {
|
|
661 | 661 | "colab_type": "code",
|
662 | 662 | "colab": {
|
663 | 663 | "base_uri": "https://localhost:8080/",
|
664 |
| - "height": 323 |
| 664 | + "height": 341 |
665 | 665 | },
|
666 |
| - "outputId": "0ec5d4c8-56ff-4b9c-997b-1c61cff2886e" |
| 666 | + "outputId": "df986f17-81c9-4bf4-e8b6-1e10fc337083" |
667 | 667 | },
|
668 | 668 | "source": [
|
669 | 669 | "# Model Prediction\n",
|
670 | 670 | "\n",
|
| 671 | + "print(\"Sample Prediction\")\n", |
671 | 672 | "pred = result.predict(X_test)\n",
|
672 | 673 | "model_prediction = pd.DataFrame(pred.round(2),columns = ['Prediction'])\n",
|
673 | 674 | "model_prediction['temp'] = 'temp'\n",
|
|
686 | 687 | "print(\"Model 1, F1 Score :\",model_1_fscore)\n",
|
687 | 688 | "model_1_roc = roc_auc_score(y_test,y_pred)\n",
|
688 | 689 | "print(\"Model 1, AUC :\",model_1_roc)\n",
|
689 |
| - "print(\"\\nConfusion Matrix Model 1\")\n", |
| 690 | + "print(\"\\nConfusion Matrix, Model 1\")\n", |
690 | 691 | "model_1_cm = confusion_matrix(y_test,y_pred)\n",
|
691 | 692 | "print(model_1_cm)"
|
692 | 693 | ],
|
693 |
| - "execution_count": 10, |
| 694 | + "execution_count": 12, |
694 | 695 | "outputs": [
|
695 | 696 | {
|
696 | 697 | "output_type": "stream",
|
697 | 698 | "text": [
|
| 699 | + "Sample Prediction\n", |
698 | 700 | " Prediction temp Final_Class\n",
|
699 | 701 | "23 0.61 temp 1\n",
|
700 | 702 | "81 0.62 temp 1\n",
|
|
709 | 711 | "Model 1, F1 Score : 0.46\n",
|
710 | 712 | "Model 1, AUC : 0.5\n",
|
711 | 713 | "\n",
|
712 |
| - "Confusion Matrix Model 1\n", |
| 714 | + "Confusion Matrix, Model 1\n", |
713 | 715 | "[[ 0 21]\n",
|
714 | 716 | " [ 0 9]]\n"
|
715 | 717 | ],
|
|
0 commit comments