forked from huggingface/text-generation-inference
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Dockerfile_amd
218 lines (173 loc) · 6.61 KB
/
Dockerfile_amd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.79 AS chef
WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP
COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --profile release-opt --recipe-path recipe.json
ARG GIT_SHA
ARG DOCKER_LABEL
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY launcher launcher
RUN cargo build --profile release-opt
# Text Generation Inference base image for RoCm
FROM rocm/dev-ubuntu-22.04:6.1.1_hip_update as base
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
ccache \
curl \
git \
make \
libssl-dev \
g++ \
# Needed to build VLLM & flash.
rocthrust-dev \
hipsparse-dev \
hipblas-dev \
hipblaslt-dev \
rocblas-dev \
hiprand-dev \
rocrand-dev \
miopen-hip-dev \
hipfft-dev \
hipcub-dev \
hipsolver-dev \
rccl-dev \
cmake \
python3-dev && \
rm -rf /var/lib/apt/lists/*
# Keep in sync with `server/pyproject.toml
ARG MAMBA_VERSION=23.1.0-1
ARG PYTORCH_VERSION='2.3.0'
ARG ROCM_VERSION='6.0.2'
ARG PYTHON_VERSION='3.10.10'
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH /opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
mamba init && \
rm ~/mambaforge.sh
# Install flash-attention, torch dependencies
RUN pip install numpy einops ninja --no-cache-dir
RUN conda install intel::mkl-static intel::mkl-include
RUN pip uninstall -y triton && \
git clone --depth 1 --single-branch https://github.com/ROCm/triton.git && \
cd triton/python && \
pip install .
RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir
ARG _GLIBCXX_USE_CXX11_ABI="1"
ARG CMAKE_PREFIX_PATH="/opt/conda"
ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942"
ARG BUILD_CAFFE2="0" \
BUILD_CAFFE2_OPS="0" \
USE_CUDA="0" \
USE_ROCM="1" \
BUILD_TEST="0" \
USE_FBGEMM="0" \
USE_NNPACK="0" \
USE_QNNPACK="0" \
USE_XNNPACK="0" \
USE_FLASH_ATTENTION="1" \
USE_MEM_EFF_ATTENTION="0"
RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install
# Set as recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm
ENV HIP_FORCE_DEV_KERNARG=1
# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK.
# However, Triton requires a tunning for each prompt length, which is prohibitive.
ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0
FROM base AS kernel-builder
# # Build vllm kernels
FROM kernel-builder AS vllm-builder
WORKDIR /usr/src
COPY server/Makefile-vllm Makefile
# Build specific version of vllm
RUN make build-vllm-rocm
# Build Flash Attention v2 kernels
FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src
COPY server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2
RUN make build-flash-attention-v2-rocm
# Build Transformers CUDA kernels (gpt-neox and bloom)
FROM kernel-builder as custom-kernels-builder
WORKDIR /usr/src
COPY server/custom_kernels/ .
RUN python setup.py build
# Build exllama kernels
FROM kernel-builder as exllama-kernels-builder
WORKDIR /usr/src
COPY server/exllama_kernels/ .
RUN python setup.py build
# Build exllama v2 kernels
FROM kernel-builder as exllamav2-kernels-builder
WORKDIR /usr/src
COPY server/exllamav2_kernels/ .
RUN python setup.py build
FROM base as base-copy
# Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
# Copy builds artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Install server
COPY proto proto
COPY server server
COPY server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_rocm.txt && \
pip install ".[accelerate, peft, outlines]" --no-cache-dir
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
# AWS Sagemaker compatible image
FROM base as sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]
# Final image
FROM base-copy
COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh
ENTRYPOINT ["/tgi-entrypoint.sh"]
CMD ["--json-output"]