-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdemo_GPDNN.jl
202 lines (165 loc) · 5.08 KB
/
demo_GPDNN.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
###################################
## Bayesian Deep Learning
## via Gaussian Process Regression
using Distributions
using PDMats
using PyPlot
function calc_kernel_matrix(X, kernel)
N = length(X)
K = zeros(N, N)
for n1 in 1 : N
for n2 in n1 : N
K[n1, n2] = kernel(X[n1], X[n2])
end
end
return Symmetric(K)
end
function calc_kernel_sequence(X, x, kernel)
N = length(X)
seq = [kernel(X[n], x) for n in 1 : N]
return seq
end
function predict(X_train, Y_train, X, kernel, sigma2_y)
N = length(X)
mu = zeros(N)
sigma2 = zeros(N)
N_train = length(Y_train)
K = calc_kernel_matrix(X_train, kernel)
invmat = inv(sigma2_y * eye(N_train) + K)
for n in 1 : N
seq = calc_kernel_sequence(X_train, X[n], kernel) # N dim
mu[n] = seq' * invmat * Y_train
sigma2[n] = sigma2_y + kernel(X[n], X[n]) - seq'*invmat*seq
end
return mu, sigma2
end
function plot_predict(X, mu, sigma2)
fill_between(X, mu + sqrt.(sigma2), mu - sqrt.(sigma2), color="c", alpha=0.5)
plot(X, mu, "-b")
end
###################
# common setting
# input
x_min = - 5.0
x_max = + 5.0
N = 100
X = linspace(x_min, x_max, N)
# noise parameter
sigma2_y = 0.1
###################
# kernels
# multinomial covariance function
M = 3
Sigma_W = diagm([10.0, 1.0, 0.1, 0.01])
multi(x, M) = [x^m for m in 0:M]
kernel_m(x1, x2) = trace(multi(x1, M)*multi(x2, M)'*Sigma_W)
K_m = calc_kernel_matrix(X, kernel_m)
# RBF covariance function
alpha = 1.0
beta = 1.0
kernel_g(x1, x2) = alpha * exp(-0.5*inv(beta^2)*(x1 - x2)^2)
K_g = calc_kernel_matrix(X, kernel_g)
# neural network (erf) covariance function
Sigma = 10.0*eye(2)
aug(x) = Array([1, x])
kernel_e(x1, x2) = (2/pi)*asin((2*trace(aug(x2)*aug(x1)'*Sigma))/sqrt((1+2*trace(aug(x1)*aug(x1)'*Sigma))*(1+2*trace(aug(x2)*aug(x2)'*Sigma))))
K_e = calc_kernel_matrix(X, kernel_e)
# neural network (ReLU) covariance function
rad(x1, x2) = acos(max(min(sum(x1.*x2)/(norm(x1)*norm(x2)), 1.0), -1.0))
kernel_r(x1, x2) = (1.0 / pi) * norm(aug(x1)) * norm(aug(x2)) * (sin(rad(aug(x1), aug(x2))) + (pi - rad(aug(x1), aug(x2)))*cos(rad(aug(x1), aug(x2))))
K_r = calc_kernel_matrix(X, kernel_r)
# deep neural network (ReLU) covariance function
L = 8
sigma2_b = 1.0
sigma2_w = 2.0
kernel_tmp(x1, x2, L) = L > 0 ? (k_11=kernel_tmp(x1, x1, L-1);k_22=kernel_tmp(x2, x2, L-1);theta=acos(kernel_tmp(x1, x2, L-1) / sqrt(k_11 * k_22));sigma2_b + (sigma2_w/(2*pi))*sqrt(k_11*k_22)*(sin(theta) + (pi - theta)*cos(theta)) ) : sigma2_b + sigma2_w*(x1'*x2 / length(x1))
kernel_d(x1, x2) = kernel_tmp(x1, x2, L)
K_d = calc_kernel_matrix(X, kernel_d)
###################
# training
# data
N_train_all = 40
X_train_all = linspace(-3.0, 3.0, N_train_all)
Y_train_all = sin.(X_train_all .* 2*pi / (maximum(X_train_all) - minimum(X_train_all)))
# sample from priors
Y_m = []
Y_g = []
Y_e = []
Y_r = []
Y_d = []
tiny = 1.0e-5
num_sample = 10
for _ in 1 : num_sample
push!(Y_m, rand(MvNormal(zeros(N), tiny*eye(N) + K_m)))
push!(Y_g, rand(MvNormal(zeros(N), tiny*eye(N) + K_g)))
push!(Y_e, rand(MvNormal(zeros(N), tiny*eye(N) + K_e)))
push!(Y_r, rand(MvNormal(zeros(N), tiny*eye(N) + K_r)))
push!(Y_d, rand(MvNormal(zeros(N), tiny*eye(N) + K_d)))
end
dir_name = "fig"
if !isdir(dir_name)
mkdir(dir_name)
end
figure("function sample", figsize=(16,8))
for n in 1 : N_train_all
clf()
N_train = n
X_train = X_train_all[1:n]
Y_train = Y_train_all[1:n]
# prediction
mu_m, sigma2_m = predict(X_train, Y_train, X, kernel_m, sigma2_y)
mu_g, sigma2_g = predict(X_train, Y_train, X, kernel_g, sigma2_y)
mu_e, sigma2_e = predict(X_train, Y_train, X, kernel_e, sigma2_y)
mu_r, sigma2_r = predict(X_train, Y_train, X, kernel_r, sigma2_y)
mu_d, sigma2_d = predict(X_train, Y_train, X, kernel_d, sigma2_y)
###################
# visualization
# prior
for i in 1 : num_sample
# sample Y
subplot(2,5,1)
title("cubic")
plot(X, Y_m[i], "-")
subplot(2,5,2)
title("RBF")
plot(X, Y_g[i], "-")
subplot(2,5,3)
title("NN (erf)")
plot(X, Y_e[i], "-")
subplot(2,5,4)
title("NN (ReLU)")
plot(X, Y_r[i], "-")
subplot(2,5,5)
title("DNN (ReLU)")
plot(X, Y_d[i], "-")
end
# prediction
y_min = -3
y_max = +3
subplot(2,5,6)
plot_predict(X, mu_m, sigma2_m)
plot(X_train, Y_train, "xk")
xlim([x_min, x_max])
ylim([y_min, y_max])
subplot(2,5,7)
plot_predict(X, mu_g, sigma2_g)
plot(X_train, Y_train, "xk")
xlim([x_min, x_max])
ylim([y_min, y_max])
subplot(2,5,8)
plot_predict(X, mu_e, sigma2_e)
plot(X_train, Y_train, "xk")
xlim([x_min, x_max])
ylim([y_min, y_max])
subplot(2,5,9)
plot_predict(X, mu_r, sigma2_r)
plot(X_train, Y_train, "xk")
xlim([x_min, x_max])
ylim([y_min, y_max])
subplot(2,5,10)
plot_predict(X, mu_d, sigma2_d)
plot(X_train, Y_train, "xk")
xlim([x_min, x_max])
ylim([y_min, y_max])
savefig(@sprintf("fig/%03d.png", n))
end