Skip to content

A pytorch Implementation of Open Vocabulary Object Detection with Pseudo Bounding-Box Labels

License

Notifications You must be signed in to change notification settings

salesforce/PB-OVD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Open Vocabulary Object Detection with Pseudo Bounding-Box Labels

Introduction

This is an official pytorch implementation of Open Vocabulary Object Detection with Pseudo Bounding-Box Labels. network

Environment

UBUNTU="18.04"
CUDA="11.0"
CUDNN="8"

Installation

conda create --name ovd

conda activate ovd

cd $INSTALL_DIR

bash ovd_install.sh

git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext

cd ../
cuda_dir="maskrcnn_benchmark/csrc/cuda"
perl -i -pe 's/AT_CHECK/TORCH_CHECK/' $cuda_dir/deform_pool_cuda.cu $cuda_dir/deform_conv_cuda.cu
python setup.py build develop

Data Preparation

Inference

python -m torch.distributed.launch --nproc_per_node=8 tools/test_net.py \
--config-file configs/eval.yaml \
MODEL.WEIGHT $PATH_TO_FINAL_MODEL \
OUTPUT_DIR $OUTPUT_DIR
  • For LVIS, use their official API to get evaluated numbers
python evaluate_lvis_official.py --coco_anno_path datasets/lvis_v0.5_val_all_clipemb.json \
--result_dir $OUTPUT_DIR/inference/lvis_v0.5_val_all_cocostyle/

Pretrain with Pseudo Labels

python -m torch.distributed.launch --nproc_per_node=16 tools/train_net.py  --distributed \
--config-file configs/pretrain_1m.yaml \
OUTPUT_DIR $OUTPUT_DIR

Finetune

python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py  --distributed \
--config-file configs/finetune.yaml \
MODEL.WEIGHT $PATH_TO_PRETRAIN_MODEL \
OUTPUT_DIR $OUTPUT_DIR

Generate Your Own Pseudo Box Labels

examples

Installation

conda create --name gen_plabels

conda activate gen_plabels

bash gen_plabel_install.sh

Preparation

Generate Pseudo Labels

  • Get pseudo labels based on ALBEF
python pseudo_bbox_generation.py
  • Organize dataset in COCO format
python prepare_coco_dataset.py
  • Extract text embedding using CLIP
# pip install git+https://github.com/openai/CLIP.git

python prepare_clip_embedding_for_open_vocab.py
  • Check your final pseudo labels by visualization
python visualize_coco_style_dataset.py

Citation

  • If you find this code helpful, please cite our paper:
@article{gao2021towards,
  title={Open Vocabulary Object Detection with Pseudo Bounding-Box Labels},
  author={Gao, Mingfei and Xing, Chen and Niebles, Juan Carlos and Li, Junnan and Xu, Ran and Liu, Wenhao and Xiong, Caiming},
  journal={arXiv preprint arXiv:2111.09452},
  year={2021}
}

Contact

Notes

About

A pytorch Implementation of Open Vocabulary Object Detection with Pseudo Bounding-Box Labels

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published