-
Notifications
You must be signed in to change notification settings - Fork 76
/
knowledge_graph.py
403 lines (354 loc) · 16.9 KB
/
knowledge_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
Copyright (c) 2018, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Knowledge Graph Environment.
"""
import collections
import os
import pickle
import torch
import torch.nn as nn
from src.data_utils import load_index
from src.data_utils import NO_OP_ENTITY_ID, NO_OP_RELATION_ID
from src.data_utils import DUMMY_ENTITY_ID, DUMMY_RELATION_ID
from src.data_utils import START_RELATION_ID
import src.utils.ops as ops
from src.utils.ops import int_var_cuda, var_cuda
class KnowledgeGraph(nn.Module):
"""
The discrete knowledge graph is stored with an adjacency list.
"""
def __init__(self, args):
super(KnowledgeGraph, self).__init__()
self.entity2id, self.id2entity = {}, {}
self.relation2id, self.id2relation = {}, {}
self.type2id, self.id2type = {}, {}
self.entity2typeid = {}
self.adj_list = None
self.bandwidth = args.bandwidth
self.args = args
self.action_space = None
self.action_space_buckets = None
self.unique_r_space = None
self.train_subjects = None
self.train_objects = None
self.dev_subjects = None
self.dev_objects = None
self.all_subjects = None
self.all_objects = None
self.train_subject_vectors = None
self.train_object_vectors = None
self.dev_subject_vectors = None
self.dev_object_vectors = None
self.all_subject_vectors = None
self.all_object_vectors = None
print('** Create {} knowledge graph **'.format(args.model))
self.load_graph_data(args.data_dir)
self.load_all_answers(args.data_dir)
# Define NN Modules
self.entity_dim = args.entity_dim
self.relation_dim = args.relation_dim
self.emb_dropout_rate = args.emb_dropout_rate
self.num_graph_convolution_layers = args.num_graph_convolution_layers
self.entity_embeddings = None
self.relation_embeddings = None
self.entity_img_embeddings = None
self.relation_img_embeddings = None
self.EDropout = None
self.RDropout = None
self.define_modules()
self.initialize_modules()
def load_graph_data(self, data_dir):
# Load indices
self.entity2id, self.id2entity = load_index(os.path.join(data_dir, 'entity2id.txt'))
print('Sanity check: {} entities loaded'.format(len(self.entity2id)))
self.type2id, self.id2type = load_index(os.path.join(data_dir, 'type2id.txt'))
print('Sanity check: {} types loaded'.format(len(self.type2id)))
with open(os.path.join(data_dir, 'entity2typeid.pkl'), 'rb') as f:
self.entity2typeid = pickle.load(f)
self.relation2id, self.id2relation = load_index(os.path.join(data_dir, 'relation2id.txt'))
print('Sanity check: {} relations loaded'.format(len(self.relation2id)))
# Load graph structures
if self.args.model.startswith('point'):
# Base graph structure used for training and test
adj_list_path = os.path.join(data_dir, 'adj_list.pkl')
with open(adj_list_path, 'rb') as f:
self.adj_list = pickle.load(f)
self.vectorize_action_space(data_dir)
def vectorize_action_space(self, data_dir):
"""
Pre-process and numericalize the knowledge graph structure.
"""
def load_page_rank_scores(input_path):
pgrk_scores = collections.defaultdict(float)
with open(input_path) as f:
for line in f:
e, score = line.strip().split(':')
e_id = self.entity2id[e.strip()]
score = float(score)
pgrk_scores[e_id] = score
return pgrk_scores
# Sanity check
num_facts = 0
out_degrees = collections.defaultdict(int)
for e1 in self.adj_list:
for r in self.adj_list[e1]:
num_facts += len(self.adj_list[e1][r])
out_degrees[e1] += len(self.adj_list[e1][r])
print("Sanity check: maximum out degree: {}".format(max(out_degrees.values())))
print('Sanity check: {} facts in knowledge graph'.format(num_facts))
# load page rank scores
page_rank_scores = load_page_rank_scores(os.path.join(data_dir, 'raw.pgrk'))
def get_action_space(e1):
action_space = []
if e1 in self.adj_list:
for r in self.adj_list[e1]:
targets = self.adj_list[e1][r]
for e2 in targets:
action_space.append((r, e2))
if len(action_space) + 1 >= self.bandwidth:
# Base graph pruning
sorted_action_space = \
sorted(action_space, key=lambda x: page_rank_scores[x[1]], reverse=True)
action_space = sorted_action_space[:self.bandwidth]
action_space.insert(0, (NO_OP_RELATION_ID, e1))
return action_space
def get_unique_r_space(e1):
if e1 in self.adj_list:
return list(self.adj_list[e1].keys())
else:
return []
def vectorize_action_space(action_space_list, action_space_size):
bucket_size = len(action_space_list)
r_space = torch.zeros(bucket_size, action_space_size) + self.dummy_r
e_space = torch.zeros(bucket_size, action_space_size) + self.dummy_e
action_mask = torch.zeros(bucket_size, action_space_size)
for i, action_space in enumerate(action_space_list):
for j, (r, e) in enumerate(action_space):
r_space[i, j] = r
e_space[i, j] = e
action_mask[i, j] = 1
return (int_var_cuda(r_space), int_var_cuda(e_space)), var_cuda(action_mask)
def vectorize_unique_r_space(unique_r_space_list, unique_r_space_size, volatile):
bucket_size = len(unique_r_space_list)
unique_r_space = torch.zeros(bucket_size, unique_r_space_size) + self.dummy_r
for i, u_r_s in enumerate(unique_r_space_list):
for j, r in enumerate(u_r_s):
unique_r_space[i, j] = r
return int_var_cuda(unique_r_space)
if self.args.use_action_space_bucketing:
"""
Store action spaces in buckets.
"""
self.action_space_buckets = {}
action_space_buckets_discrete = collections.defaultdict(list)
self.entity2bucketid = torch.zeros(self.num_entities, 2).long()
num_facts_saved_in_action_table = 0
for e1 in range(self.num_entities):
action_space = get_action_space(e1)
key = int(len(action_space) / self.args.bucket_interval) + 1
self.entity2bucketid[e1, 0] = key
self.entity2bucketid[e1, 1] = len(action_space_buckets_discrete[key])
action_space_buckets_discrete[key].append(action_space)
num_facts_saved_in_action_table += len(action_space)
print('Sanity check: {} facts saved in action table'.format(
num_facts_saved_in_action_table - self.num_entities))
for key in action_space_buckets_discrete:
print('Vectorizing action spaces bucket {}...'.format(key))
self.action_space_buckets[key] = vectorize_action_space(
action_space_buckets_discrete[key], key * self.args.bucket_interval)
else:
action_space_list = []
max_num_actions = 0
for e1 in range(self.num_entities):
action_space = get_action_space(e1)
action_space_list.append(action_space)
if len(action_space) > max_num_actions:
max_num_actions = len(action_space)
print('Vectorizing action spaces...')
self.action_space = vectorize_action_space(action_space_list, max_num_actions)
if self.args.model.startswith('rule'):
unique_r_space_list = []
max_num_unique_rs = 0
for e1 in sorted(self.adj_list.keys()):
unique_r_space = get_unique_r_space(e1)
unique_r_space_list.append(unique_r_space)
if len(unique_r_space) > max_num_unique_rs:
max_num_unique_rs = len(unique_r_space)
self.unique_r_space = vectorize_unique_r_space(unique_r_space_list, max_num_unique_rs)
def load_all_answers(self, data_dir, add_reversed_edges=False):
def add_subject(e1, e2, r, d):
if not e2 in d:
d[e2] = {}
if not r in d[e2]:
d[e2][r] = set()
d[e2][r].add(e1)
def add_object(e1, e2, r, d):
if not e1 in d:
d[e1] = {}
if not r in d[e1]:
d[e1][r] = set()
d[e1][r].add(e2)
# store subjects for all (rel, object) queries and
# objects for all (subject, rel) queries
train_subjects, train_objects = {}, {}
dev_subjects, dev_objects = {}, {}
all_subjects, all_objects = {}, {}
# include dummy examples
add_subject(self.dummy_e, self.dummy_e, self.dummy_r, train_subjects)
add_subject(self.dummy_e, self.dummy_e, self.dummy_r, dev_subjects)
add_subject(self.dummy_e, self.dummy_e, self.dummy_r, all_subjects)
add_object(self.dummy_e, self.dummy_e, self.dummy_r, train_objects)
add_object(self.dummy_e, self.dummy_e, self.dummy_r, dev_objects)
add_object(self.dummy_e, self.dummy_e, self.dummy_r, all_objects)
for file_name in ['raw.kb', 'train.triples', 'dev.triples', 'test.triples']:
if 'NELL' in self.args.data_dir and self.args.test and file_name == 'train.triples':
continue
with open(os.path.join(data_dir, file_name)) as f:
for line in f:
e1, e2, r = line.strip().split()
e1, e2, r = self.triple2ids((e1, e2, r))
if file_name in ['raw.kb', 'train.triples']:
add_subject(e1, e2, r, train_subjects)
add_object(e1, e2, r, train_objects)
if add_reversed_edges:
add_subject(e2, e1, self.get_inv_relation_id(r), train_subjects)
add_object(e2, e1, self.get_inv_relation_id(r), train_objects)
if file_name in ['raw.kb', 'train.triples', 'dev.triples']:
add_subject(e1, e2, r, dev_subjects)
add_object(e1, e2, r, dev_objects)
if add_reversed_edges:
add_subject(e2, e1, self.get_inv_relation_id(r), dev_subjects)
add_object(e2, e1, self.get_inv_relation_id(r), dev_objects)
add_subject(e1, e2, r, all_subjects)
add_object(e1, e2, r, all_objects)
if add_reversed_edges:
add_subject(e2, e1, self.get_inv_relation_id(r), all_subjects)
add_object(e2, e1, self.get_inv_relation_id(r), all_objects)
self.train_subjects = train_subjects
self.train_objects = train_objects
self.dev_subjects = dev_subjects
self.dev_objects = dev_objects
self.all_subjects = all_subjects
self.all_objects = all_objects
# change the answer set into a variable
def answers_to_var(d_l):
d_v = collections.defaultdict(collections.defaultdict)
for x in d_l:
for y in d_l[x]:
v = torch.LongTensor(list(d_l[x][y])).unsqueeze(1)
d_v[x][y] = int_var_cuda(v)
return d_v
self.train_subject_vectors = answers_to_var(train_subjects)
self.train_object_vectors = answers_to_var(train_objects)
self.dev_subject_vectors = answers_to_var(dev_subjects)
self.dev_object_vectors = answers_to_var(dev_objects)
self.all_subject_vectors = answers_to_var(all_subjects)
self.all_object_vectors = answers_to_var(all_objects)
def load_fuzzy_facts(self):
# extend current adjacency list with fuzzy facts
dev_path = os.path.join(self.args.data_dir, 'dev.triples')
test_path = os.path.join(self.args.data_dir, 'test.triples')
with open(dev_path) as f:
dev_triples = [l.strip() for l in f.readlines()]
with open(test_path) as f:
test_triples = [l.strip() for l in f.readlines()]
removed_triples = set(dev_triples + test_triples)
theta = 0.5
fuzzy_fact_path = os.path.join(self.args.data_dir, 'train.fuzzy.triples')
count = 0
with open(fuzzy_fact_path) as f:
for line in f:
e1, e2, r, score = line.strip().split()
score = float(score)
if score < theta:
continue
print(line)
if '{}\t{}\t{}'.format(e1, e2, r) in removed_triples:
continue
e1_id = self.entity2id[e1]
e2_id = self.entity2id[e2]
r_id = self.relation2id[r]
if not r_id in self.adj_list[e1_id]:
self.adj_list[e1_id][r_id] = set()
if not e2_id in self.adj_list[e1_id][r_id]:
self.adj_list[e1_id][r_id].add(e2_id)
count += 1
if count > 0 and count % 1000 == 0:
print('{} fuzzy facts added'.format(count))
self.vectorize_action_space(self.args.data_dir)
def get_inv_relation_id(self, r_id):
return r_id + 1
def get_all_entity_embeddings(self):
return self.EDropout(self.entity_embeddings.weight)
def get_entity_embeddings(self, e):
return self.EDropout(self.entity_embeddings(e))
def get_all_relation_embeddings(self):
return self.RDropout(self.relation_embeddings.weight)
def get_relation_embeddings(self, r):
return self.RDropout(self.relation_embeddings(r))
def get_all_entity_img_embeddings(self):
return self.EDropout(self.entity_img_embeddings.weight)
def get_entity_img_embeddings(self, e):
return self.EDropout(self.entity_img_embeddings(e))
def get_relation_img_embeddings(self, r):
return self.RDropout(self.relation_img_embeddings(r))
def virtual_step(self, e_set, r):
"""
Given a set of entities (e_set), find the set of entities (e_set_out) which has at least one incoming edge
labeled r and the source entity is in e_set.
"""
batch_size = len(e_set)
e_set_1D = e_set.view(-1)
r_space = self.action_space[0][0][e_set_1D]
e_space = self.action_space[0][1][e_set_1D]
e_space = (r_space.view(batch_size, -1) == r.unsqueeze(1)).long() * e_space.view(batch_size, -1)
e_set_out = []
for i in range(len(e_space)):
e_set_out_b = var_cuda(unique(e_space[i].data))
e_set_out.append(e_set_out_b.unsqueeze(0))
e_set_out = ops.pad_and_cat(e_set_out, padding_value=self.dummy_e)
return e_set_out
def id2triples(self, triple):
e1, e2, r = triple
return self.id2entity[e1], self.id2entity[e2], self.id2relation[r]
def triple2ids(self, triple):
e1, e2, r = triple
return self.entity2id[e1], self.entity2id[e2], self.relation2id[r]
def define_modules(self):
if not self.args.relation_only:
self.entity_embeddings = nn.Embedding(self.num_entities, self.entity_dim)
if self.args.model == 'complex':
self.entity_img_embeddings = nn.Embedding(self.num_entities, self.entity_dim)
self.EDropout = nn.Dropout(self.emb_dropout_rate)
self.relation_embeddings = nn.Embedding(self.num_relations, self.relation_dim)
if self.args.model == 'complex':
self.relation_img_embeddings = nn.Embedding(self.num_relations, self.relation_dim)
self.RDropout = nn.Dropout(self.emb_dropout_rate)
def initialize_modules(self):
if not self.args.relation_only:
nn.init.xavier_normal_(self.entity_embeddings.weight)
nn.init.xavier_normal_(self.relation_embeddings.weight)
@property
def num_entities(self):
return len(self.entity2id)
@property
def num_relations(self):
return len(self.relation2id)
@property
def self_edge(self):
return NO_OP_RELATION_ID
@property
def self_e(self):
return NO_OP_ENTITY_ID
@property
def dummy_r(self):
return DUMMY_RELATION_ID
@property
def dummy_e(self):
return DUMMY_ENTITY_ID
@property
def dummy_start_r(self):
return START_RELATION_ID