forked from explodinggradients/ragas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataset_schema.py
174 lines (130 loc) · 5.42 KB
/
test_dataset_schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import typing as t
import pytest
from ragas.dataset_schema import (
EvaluationDataset,
HumanMessage,
MultiTurnSample,
PromptAnnotation,
SampleAnnotation,
SingleMetricAnnotation,
SingleTurnSample,
)
samples = [
SingleTurnSample(user_input="What is X", response="Y"),
MultiTurnSample(
user_input=[HumanMessage(content="What is X")],
reference="Y",
),
]
def create_sample_annotation(metric_output):
return SampleAnnotation(
metric_input={
"response": "",
"reference": "",
"user_input": "",
},
metric_output=metric_output,
prompts={
"single_turn_aspect_critic_prompt": PromptAnnotation(
prompt_input={
"response": "",
"reference": "",
"user_input": "",
},
prompt_output={"reason": "", "verdict": 1},
is_accepted=True,
edited_output=None,
)
},
is_accepted=True,
target=None,
)
def test_loader_sample():
annotated_samples = [create_sample_annotation(1) for _ in range(10)] + [
create_sample_annotation(0) for _ in range(10)
]
test_dataset = SingleMetricAnnotation(name="metric", samples=annotated_samples)
sample = test_dataset.sample(2)
assert len(sample) == 2
sample = test_dataset.sample(2, stratify_key="metric_output")
assert len(sample) == 2
assert sum(item["metric_output"] for item in sample) == 1
def test_loader_batch():
annotated_samples = [create_sample_annotation(1) for _ in range(10)] + [
create_sample_annotation(0) for _ in range(10)
]
dataset = SingleMetricAnnotation(name="metric", samples=annotated_samples)
batches = dataset.batch(batch_size=2)
assert all([len(item) == 2 for item in batches])
batches = dataset.stratified_batches(batch_size=2, stratify_key="metric_output")
assert all(sum([item["metric_output"] for item in batch]) == 1 for batch in batches)
@pytest.mark.parametrize("eval_sample", samples)
def test_evaluation_dataset(eval_sample):
dataset = EvaluationDataset(samples=[eval_sample, eval_sample])
hf_dataset = dataset.to_hf_dataset()
assert dataset.get_sample_type() is type(eval_sample)
assert len(hf_dataset) == 2
assert len(dataset) == 2
assert dataset[0] == eval_sample
dataset_from_hf = EvaluationDataset.from_hf_dataset(hf_dataset)
assert dataset_from_hf == dataset
@pytest.mark.parametrize("eval_sample", samples)
def test_evaluation_dataset_save_load_csv(tmpdir, eval_sample):
dataset = EvaluationDataset(samples=[eval_sample, eval_sample])
# save and load to csv
csv_path = tmpdir / "csvfile.csv"
dataset.to_csv(csv_path)
@pytest.mark.parametrize("eval_sample", samples)
def test_evaluation_dataset_save_load_jsonl(tmpdir, eval_sample):
dataset = EvaluationDataset(samples=[eval_sample, eval_sample])
# save and load to jsonl
jsonl_path = tmpdir / "jsonlfile.jsonl"
dataset.to_jsonl(jsonl_path)
loaded_dataset = EvaluationDataset.from_jsonl(jsonl_path)
assert loaded_dataset == dataset
@pytest.mark.parametrize("eval_sample", samples)
def test_evaluation_dataset_load_from_hf(eval_sample):
dataset = EvaluationDataset(samples=[eval_sample, eval_sample])
# convert to and load from hf dataset
hf_dataset = dataset.to_hf_dataset()
loaded_dataset = EvaluationDataset.from_hf_dataset(hf_dataset)
assert loaded_dataset == dataset
@pytest.mark.parametrize("eval_sample", samples)
def test_single_type_evaluation_dataset(eval_sample):
single_turn_sample = SingleTurnSample(user_input="What is X", response="Y")
multi_turn_sample = MultiTurnSample(
user_input=[{"content": "What is X"}],
response="Y", # type: ignore (this type error is what we want to test)
)
with pytest.raises(ValueError) as exc_info:
EvaluationDataset(samples=[single_turn_sample, multi_turn_sample])
error_message = str(exc_info.value)
assert (
"Sample at index 1 is of type <class 'ragas.dataset_schema.MultiTurnSample'>"
in error_message
)
assert "expected <class 'ragas.dataset_schema.SingleTurnSample'>" in error_message
def test_base_eval_sample():
from ragas.dataset_schema import BaseSample
class FakeSample(BaseSample):
user_input: str
response: str
reference: t.Optional[str] = None
fake_sample = FakeSample(user_input="What is X", response="Y")
assert fake_sample.to_dict() == {"user_input": "What is X", "response": "Y"}
assert fake_sample.get_features() == ["user_input", "response"]
def test_evaluation_dataset_iter():
single_turn_sample = SingleTurnSample(user_input="What is X", response="Y")
dataset = EvaluationDataset(samples=[single_turn_sample, single_turn_sample])
for sample in dataset:
assert sample == single_turn_sample
def test_evaluation_dataset_type():
single_turn_sample = SingleTurnSample(user_input="What is X", response="Y")
multi_turn_sample = MultiTurnSample(
user_input=[{"content": "What is X"}],
response="Y", # type: ignore (this type error is what we want to test)
)
dataset = EvaluationDataset(samples=[single_turn_sample])
assert dataset.get_sample_type() == SingleTurnSample
dataset = EvaluationDataset(samples=[multi_turn_sample])
assert dataset.get_sample_type() == MultiTurnSample