-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathcolor_syncnet_train.py
341 lines (258 loc) · 11.3 KB
/
color_syncnet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from os.path import dirname, join, basename, isfile, isdir
from tqdm import tqdm
from models import SyncNet_color as SyncNet
import audio
import torch
from torch import nn
from torch import optim
from torch.utils.tensorboard import SummaryWriter
import torch.backends.cudnn as cudnn
from torch.utils import data as data_utils
import numpy as np
from glob import glob
import os, random, cv2, argparse
import albumentations as A
from hparams import hparams, get_image_list
parser = argparse.ArgumentParser(description='Code to train the expert lip-sync discriminator')
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True)
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
parser.add_argument('--checkpoint_path', help='Resumed from this checkpoint', default=None, type=str)
args = parser.parse_args()
global_step = 0
global_epoch = 0
os.environ['CUDA_VISIBLE_DEVICES']='2'
use_cuda = torch.cuda.is_available()
print('use_cuda: {}'.format(use_cuda))
syncnet_T = 5
emonet_T = 5
syncnet_mel_step_size = 16
class Dataset(object):
def __init__(self, split):
#self.all_videos = get_image_list(args.data_root, split)
self.all_videos = [join(args.data_root, f) for f in os.listdir(args.data_root) if isdir(join(args.data_root, f))]
print('Num files: ', len(self.all_videos))
# to apply same augmentation for all the frames
target = {}
for i in range(1, emonet_T):
target['image' + str(i)] = 'image'
self.augments = A.Compose([
A.RandomBrightnessContrast(p=0.2),
A.RandomGamma(p=0.2),
A.CLAHE(p=0.2),
A.HueSaturationValue(hue_shift_limit=20, sat_shift_limit=50, val_shift_limit=50, p=0.2),
A.ChannelShuffle(p=0.2),
A.RGBShift(p=0.2),
A.RandomBrightness(p=0.2),
A.RandomContrast(p=0.2),
A.GaussNoise(var_limit=(10.0, 50.0), p=0.25),
], additional_targets=target, p=0.8)
def augmentVideo(self, video):
args = {}
args['image'] = video[0, :, :, :]
for i in range(1, emonet_T):
args['image' + str(i)] = video[i, :, :, :]
result = self.augments(**args)
video[0, :, :, :] = result['image']
for i in range(1, emonet_T):
video[i, :, :, :] = result['image' + str(i)]
return video
def get_frame_id(self, frame):
return int(basename(frame).split('.')[0])
def get_window(self, start_frame):
start_id = self.get_frame_id(start_frame)
vidname = dirname(start_frame)
window_fnames = []
for frame_id in range(start_id, start_id + syncnet_T):
frame = join(vidname, '{}.jpg'.format(frame_id))
if not isfile(frame):
return None
window_fnames.append(frame)
return window_fnames
def crop_audio_window(self, spec, start_frame):
# num_frames = (T x hop_size * fps) / sample_rate
start_frame_num = self.get_frame_id(start_frame)
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
end_idx = start_idx + syncnet_mel_step_size
return spec[start_idx : end_idx, :]
def __len__(self):
return len(self.all_videos)
def __getitem__(self, idx):
while 1:
idx = random.randint(0, len(self.all_videos) - 1)
vidname = self.all_videos[idx]
#print(vidname)
img_names = list(glob(join(vidname, '*.jpg')))
if len(img_names) <= 3 * syncnet_T:
continue
img_name = random.choice(img_names)
wrong_img_name = random.choice(img_names)
while wrong_img_name == img_name:
wrong_img_name = random.choice(img_names)
if random.choice([True, False]):
y = torch.ones(1).float()
chosen = img_name
else:
y = torch.zeros(1).float()
chosen = wrong_img_name
window_fnames = self.get_window(chosen)
if window_fnames is None:
continue
window = []
all_read = True
for fname in window_fnames:
img = cv2.imread(fname)
if img is None:
all_read = False
break
try:
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
except Exception as e:
all_read = False
break
window.append(img)
if not all_read: continue
try:
wavpath = join(vidname, "audio.wav")
wav = audio.load_wav(wavpath, hparams.sample_rate)
orig_mel = audio.melspectrogram(wav).T
except Exception as e:
continue
mel = self.crop_audio_window(orig_mel.copy(), img_name)
if (mel.shape[0] != syncnet_mel_step_size):
continue
# H x W x 3 * T
window = np.asarray(window)
aug_results = self.augmentVideo(window)
window = np.split(aug_results, syncnet_T, axis=0)
x = np.concatenate(window, axis=3) / 255.
x = np.squeeze(x, axis=0).transpose(2, 0, 1)
# print(x.shape)
x = x[:, x.shape[1]//2:]
x = torch.FloatTensor(x)
mel = torch.FloatTensor(mel.T).unsqueeze(0)
return x, mel, y
logloss = nn.BCELoss()
def cosine_loss(a, v, y):
d = nn.functional.cosine_similarity(a, v)
loss = logloss(d.unsqueeze(1), y)
return loss
def train(device, model, train_data_loader, test_data_loader, optimizer,
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
#scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=6)
global global_step, global_epoch
resumed_step = global_step
num_batches = len(train_data_loader)
while global_epoch < nepochs:
print('Epoch: {}'.format(global_epoch))
running_loss = 0.
prog_bar = tqdm(enumerate(train_data_loader))
for step, (x, mel, y) in prog_bar:
model.train()
optimizer.zero_grad()
# Transform data to CUDA device
x = x.to(device)
mel = mel.to(device)
a, v = model(mel, x)
y = y.to(device)
loss = cosine_loss(a, v, y)
loss.backward()
optimizer.step()
global_step += 1
cur_session_steps = global_step - resumed_step
running_loss += loss.item()
# if global_step == 1 or global_step % checkpoint_interval == 0:
# save_checkpoint(
# model, optimizer, global_step, checkpoint_dir, global_epoch)
# if global_step % hparams.syncnet_eval_interval == 0:
# with torch.no_grad():
# eval_loss = eval_model(test_data_loader, global_step, device, model, checkpoint_dir)
prog_bar.set_description('Loss: {}'.format(running_loss / (step + 1)))
writer.add_scalar("Loss/train", running_loss/num_batches, global_epoch)
with torch.no_grad():
eval_loss = eval_model(test_data_loader, global_step, device, model, checkpoint_dir)
if(global_epoch % 50 == 0):
save_checkpoint(model, optimizer, global_step, checkpoint_dir, global_epoch)
global_epoch += 1
def eval_model(test_data_loader, global_step, device, model, checkpoint_dir):
eval_steps = 1400
print('Evaluating for {} steps'.format(eval_steps))
losses = []
while 1:
for step, (x, mel, y) in enumerate(test_data_loader):
model.eval()
# Transform data to CUDA device
x = x.to(device)
mel = mel.to(device)
a, v = model(mel, x)
y = y.to(device)
loss = cosine_loss(a, v, y)
losses.append(loss.item())
if step > eval_steps: break
averaged_loss = sum(losses) / len(losses)
print(averaged_loss)
writer.add_scalar("Loss/val", averaged_loss, global_step)
return averaged_loss
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch):
checkpoint_path = join(
checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path):
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, optimizer, reset_optimizer=False):
global global_step
global global_epoch
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
model.load_state_dict(checkpoint["state_dict"])
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model
if __name__ == "__main__":
checkpoint_dir = args.checkpoint_dir
checkpoint_path = args.checkpoint_path
if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir)
# Dataset and Dataloader setup
#train_dataset = Dataset('train')
#test_dataset = Dataset('val')
full_dataset = Dataset('train')
train_size = int(0.95 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size], generator=torch.Generator().manual_seed(42))
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=hparams.syncnet_batch_size, shuffle=True,
num_workers=hparams.num_workers)
test_data_loader = data_utils.DataLoader(
test_dataset, batch_size=hparams.syncnet_batch_size,
num_workers=8)
device = torch.device("cuda" if use_cuda else "cpu")
# Model
model = SyncNet().to(device)
#model = nn.DataParallel(SyncNet(), device_ids=[1,2]).to(device)
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
lr=hparams.syncnet_lr,betas=(0.5,0.999))
if checkpoint_path is not None:
load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer=False)
writer = SummaryWriter('runs/crema-d_disc_exp2_data_aug')
train(device, model, train_data_loader, test_data_loader, optimizer,
checkpoint_dir=checkpoint_dir,
checkpoint_interval=hparams.syncnet_checkpoint_interval,
nepochs=hparams.nepochs)
writer.flush()