-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathutils.py
31 lines (26 loc) · 1.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
import numpy as np
import torch
import torch.nn as nn
import torchvision
class perceptionLoss():
def __init__(self, device):
vgg = torchvision.models.vgg19(pretrained=True)
vgg.eval()
self.features = vgg.features.to(device)
self.feature_layers = ['4', '9', '18', '27', '36']
self.mse_loss = nn.MSELoss()
def getfeatures(self, x):
feature_list = []
for name, module in self.features._modules.items():
x = module(x)
if name in self.feature_layers:
feature_list.append(x)
return feature_list
def calculatePerceptionLoss(self, video_pd, video_gt):
features_pd = self.getfeatures(video_pd.view(video_pd.size(0)*video_pd.size(2), video_pd.size(1), video_pd.size(3), video_pd.size(4)))
features_gt = self.getfeatures(video_gt.view(video_gt.size(0)*video_gt.size(2), video_gt.size(1), video_gt.size(3), video_gt.size(4)))
with torch.no_grad():
features_gt = [x.detach() for x in features_gt]
perceptual_loss = sum([self.mse_loss(features_pd[i], features_gt[i]) for i in range(len(features_gt))])
return perceptual_loss