@@ -2718,11 +2718,11 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
27182718
27192719 sage: from sage.combinat.k_regular_sequence import RecurrenceParser
27202720 sage: RP = RecurrenceParser(2, ZZ)
2721- sage: var('n') # optional - sage.symbolic
2721+ sage: var('n') # optional - sage.symbolic
27222722 n
2723- sage: function('f') # optional - sage.symbolic
2723+ sage: function('f') # optional - sage.symbolic
27242724 f
2725- sage: M, m, coeffs, initial_values = RP.parse_recurrence([ # optional - sage.symbolic
2725+ sage: M, m, coeffs, initial_values = RP.parse_recurrence([ # optional - sage.symbolic
27262726 ....: f(8*n) == -1*f(2*n - 1) + 1*f(2*n + 1),
27272727 ....: f(8*n + 1) == -11*f(2*n - 1) + 10*f(2*n) + 11*f(2*n + 1),
27282728 ....: f(8*n + 2) == -21*f(2*n - 1) + 20*f(2*n) + 21*f(2*n + 1),
@@ -2733,9 +2733,9 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
27332733 ....: f(8*n + 7) == -71*f(2*n - 1) + 70*f(2*n) + 71*f(2*n + 1),
27342734 ....: f(0) == 0, f(1) == 1, f(2) == 2, f(3) == 3, f(4) == 4,
27352735 ....: f(5) == 5, f(6) == 6, f(7) == 7], f, n)
2736- sage: rules = RP.parameters( # optional - sage.symbolic
2736+ sage: rules = RP.parameters( # optional - sage.symbolic
27372737 ....: M, m, coeffs, initial_values, 0)
2738- sage: RP.matrix(rules, 0, False) # optional - sage.symbolic
2738+ sage: RP.matrix(rules, 0, False) # optional - sage.symbolic
27392739 [ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
27402740 [ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
27412741 [ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
@@ -2753,7 +2753,7 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
27532753 [ 0 0 0 -31 30 31 0 0 0 0 0 0 0 0 0 0 0]
27542754 [ 0 0 0 -41 40 41 0 0 0 0 0 0 0 0 0 0 0]
27552755 [ 0 0 0 -51 50 51 0 0 0 0 0 0 0 0 0 0 0]
2756- sage: RP.matrix(rules, 1, False) # optional - sage.symbolic
2756+ sage: RP.matrix(rules, 1, False) # optional - sage.symbolic
27572757 [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
27582758 [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
27592759 [ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
@@ -2788,7 +2788,7 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
27882788
27892789 Number of Unbordered Factors in the Thue--Morse Sequence::
27902790
2791- sage: M, m, coeffs, initial_values = RP.parse_recurrence([ # optional - sage.symbolic
2791+ sage: M, m, coeffs, initial_values = RP.parse_recurrence([ # optional - sage.symbolic
27922792 ....: f(8*n) == 2*f(4*n),
27932793 ....: f(8*n + 1) == f(4*n + 1),
27942794 ....: f(8*n + 2) == f(4*n + 1) + f(4*n + 3),
@@ -2802,9 +2802,9 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
28022802 ....: f(10) == 4, f(11) == 4, f(12) == 12, f(13) == 0, f(14) == 4,
28032803 ....: f(15) == 4, f(16) == 8, f(17) == 4, f(18) == 8, f(19) == 0,
28042804 ....: f(20) == 8, f(21) == 4, f(22) == 4, f(23) == 8], f, n)
2805- sage: UB_rules = RP.parameters( # optional - sage.symbolic
2805+ sage: UB_rules = RP.parameters( # optional - sage.symbolic
28062806 ....: M, m, coeffs, initial_values, 3)
2807- sage: RP.matrix(UB_rules, 0) # optional - sage.symbolic
2807+ sage: RP.matrix(UB_rules, 0) # optional - sage.symbolic
28082808 [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
28092809 [ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
28102810 [ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
@@ -2821,7 +2821,7 @@ def matrix(self, recurrence_rules, rem, correct_offset=True):
28212821 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
28222822 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
28232823 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
2824- sage: RP.matrix(UB_rules, 1) # optional - sage.symbolic
2824+ sage: RP.matrix(UB_rules, 1) # optional - sage.symbolic
28252825 [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
28262826 [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
28272827 [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
@@ -3015,9 +3015,9 @@ def right(self, recurrence_rules):
30153015
30163016 sage: from sage.combinat.k_regular_sequence import RecurrenceParser
30173017 sage: RP = RecurrenceParser(2, ZZ)
3018- sage: var('n') # optional - sage.symbolic
3018+ sage: var('n') # optional - sage.symbolic
30193019 n
3020- sage: function('f') # optional - sage.symbolic
3020+ sage: function('f') # optional - sage.symbolic
30213021 f
30223022 sage: SB_rules = RP.parameters(
30233023 ....: 1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1},
@@ -3027,7 +3027,7 @@ def right(self, recurrence_rules):
30273027
30283028 Number of Unbordered Factors in the Thue--Morse Sequence::
30293029
3030- sage: M, m, coeffs, initial_values = RP.parse_recurrence([ # optional - sage.symbolic
3030+ sage: M, m, coeffs, initial_values = RP.parse_recurrence([ # optional - sage.symbolic
30313031 ....: f(8*n) == 2*f(4*n),
30323032 ....: f(8*n + 1) == f(4*n + 1),
30333033 ....: f(8*n + 2) == f(4*n + 1) + f(4*n + 3),
@@ -3041,9 +3041,9 @@ def right(self, recurrence_rules):
30413041 ....: f(10) == 4, f(11) == 4, f(12) == 12, f(13) == 0, f(14) == 4,
30423042 ....: f(15) == 4, f(16) == 8, f(17) == 4, f(18) == 8, f(19) == 0,
30433043 ....: f(20) == 8, f(21) == 4, f(22) == 4, f(23) == 8], f, n)
3044- sage: UB_rules = RP.parameters( # optional - sage.symbolic
3044+ sage: UB_rules = RP.parameters( # optional - sage.symbolic
30453045 ....: M, m, coeffs, initial_values, 3)
3046- sage: RP.right(UB_rules) # optional - sage.symbolic
3046+ sage: RP.right(UB_rules) # optional - sage.symbolic
30473047 (1, 1, 2, 1, 2, 2, 4, 2, 4, 6, 0, 4, 4, 1, 0, 0)
30483048 """
30493049 from sage .modules .free_module_element import vector
@@ -3079,12 +3079,12 @@ def __call__(self, *args, **kwds):
30793079
30803080 sage: from sage.combinat.k_regular_sequence import RecurrenceParser
30813081 sage: RP = RecurrenceParser(2, ZZ)
3082- sage: var('n') # optional - sage.symbolic
3082+ sage: var('n') # optional - sage.symbolic
30833083 n
3084- sage: function('f') # optional - sage.symbolic
3084+ sage: function('f') # optional - sage.symbolic
30853085 f
30863086
3087- sage: RP([f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1), # optional - sage.symbolic
3087+ sage: RP([f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1), # optional - sage.symbolic
30883088 ....: f(0) == 0, f(1) == 1], f, n)
30893089 ([
30903090 [1 0 0] [1 1 0]
@@ -3094,7 +3094,7 @@ def __call__(self, *args, **kwds):
30943094 (1, 0, 0),
30953095 (0, 1, 1))
30963096
3097- sage: RP(equations=[f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1), # optional - sage.symbolic
3097+ sage: RP(equations=[f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1), # optional - sage.symbolic
30983098 ....: f(0) == 0, f(1) == 1], function=f, var=n)
30993099 ([
31003100 [1 0 0] [1 1 0]
0 commit comments