You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I tried to run GraphConsis, I found that the model always predicted all nodes as negative (normal nodes), resulting in AUC=0.5000, F1=score=0.0000. I tried to modify the parameters, mainly for the learning rate and epoch, and other parameters. Consistent with the paper, I am very confused. The parameters are as follows: parser.add_argument('--seed', type=int, default=42, help='random seed') parser.add_argument('--epochs', type=int, default=5,help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=512, help='batch size') parser.add_argument('--train_size', type=float, default=0.8,help='training set percentage') parser.add_argument('--lr', type=float, default=0.1, help='learning rate') parser.add_argument('--nhid', type=int, default=128, help='number of hidden units') parser.add_argument('--sample_sizes', type=list, default=[10, 5],help='number of samples for each layer') parser.add_argument('--identity_dim', type=int, default=32,help='dimension of context embedding') parser.add_argument('--eps', type=float, default=0.001,help='consistency score threshold ε') args = parser.parse_args()
The text was updated successfully, but these errors were encountered:
When I tried to run GraphConsis, I found that the model always predicted all nodes as negative (normal nodes), resulting in AUC=0.5000, F1=score=0.0000. I tried to modify the parameters, mainly for the learning rate and epoch, and other parameters. Consistent with the paper, I am very confused. The parameters are as follows:
parser.add_argument('--seed', type=int, default=42, help='random seed') parser.add_argument('--epochs', type=int, default=5,help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=512, help='batch size') parser.add_argument('--train_size', type=float, default=0.8,help='training set percentage') parser.add_argument('--lr', type=float, default=0.1, help='learning rate') parser.add_argument('--nhid', type=int, default=128, help='number of hidden units') parser.add_argument('--sample_sizes', type=list, default=[10, 5],help='number of samples for each layer') parser.add_argument('--identity_dim', type=int, default=32,help='dimension of context embedding') parser.add_argument('--eps', type=float, default=0.001,help='consistency score threshold ε') args = parser.parse_args()
The text was updated successfully, but these errors were encountered: