Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Question on the GraphConsis #12

Open
zltyrzshy opened this issue Apr 13, 2024 · 0 comments
Open

Question on the GraphConsis #12

zltyrzshy opened this issue Apr 13, 2024 · 0 comments

Comments

@zltyrzshy
Copy link

zltyrzshy commented Apr 13, 2024

When I tried to run GraphConsis, I found that the model always predicted all nodes as negative (normal nodes), resulting in AUC=0.5000, F1=score=0.0000. I tried to modify the parameters, mainly for the learning rate and epoch, and other parameters. Consistent with the paper, I am very confused. The parameters are as follows:
parser.add_argument('--seed', type=int, default=42, help='random seed') parser.add_argument('--epochs', type=int, default=5,help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=512, help='batch size') parser.add_argument('--train_size', type=float, default=0.8,help='training set percentage') parser.add_argument('--lr', type=float, default=0.1, help='learning rate') parser.add_argument('--nhid', type=int, default=128, help='number of hidden units') parser.add_argument('--sample_sizes', type=list, default=[10, 5],help='number of samples for each layer') parser.add_argument('--identity_dim', type=int, default=32,help='dimension of context embedding') parser.add_argument('--eps', type=float, default=0.001,help='consistency score threshold ε') args = parser.parse_args()

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant