-
Notifications
You must be signed in to change notification settings - Fork 0
/
app
35 lines (25 loc) · 875 Bytes
/
app
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import pandas as pd
from flask import Flask,request,jsonify,render_template
import pickle
app = Flask(__name__)
model = pickle.load(open('model.pkl','rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
for rendering result in gui
'''
init_features= [str(x) for x in request.form.values()]
final_features=[np.array(init_features)]
prediction=model.predict(final_features)
output=round(prediction[0],2)
if (int(output) == 1):
p = "Sorry you chances of getting the disease. Please consult the doctor immediately"
else:
p = "No need to fear. You have no dangerous symptoms of the disease"
return render_template('index.html',prediction_text=' {}'.format(p))
if __name__ == '__main__':
app.run(debug=True)