forked from ethereum/go-ethereum
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsignature_nocgo.go
152 lines (139 loc) · 4.92 KB
/
signature_nocgo.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
//go:build nacl || js || !cgo || gofuzz
// +build nacl js !cgo gofuzz
package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"errors"
"fmt"
"github.com/btcsuite/btcd/btcec/v2"
btc_ecdsa "github.com/btcsuite/btcd/btcec/v2/ecdsa"
)
// Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) {
pub, err := sigToPub(hash, sig)
if err != nil {
return nil, err
}
bytes := pub.SerializeUncompressed()
return bytes, err
}
func sigToPub(hash, sig []byte) (*btcec.PublicKey, error) {
if len(sig) != SignatureLength {
return nil, errors.New("invalid signature")
}
// Convert to btcec input format with 'recovery id' v at the beginning.
btcsig := make([]byte, SignatureLength)
btcsig[0] = sig[RecoveryIDOffset] + 27
copy(btcsig[1:], sig)
pub, _, err := btc_ecdsa.RecoverCompact(btcsig, hash)
return pub, err
}
// SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
pub, err := sigToPub(hash, sig)
if err != nil {
return nil, err
}
return pub.ToECDSA(), nil
}
// Sign calculates an ECDSA signature.
//
// This function is susceptible to chosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must
// be aware that the given hash cannot be chosen by an adversary. Common
// solution is to hash any input before calculating the signature.
//
// The produced signature is in the [R || S || V] format where V is 0 or 1.
func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
if len(hash) != 32 {
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
}
if prv.Curve != btcec.S256() {
return nil, errors.New("private key curve is not secp256k1")
}
// ecdsa.PrivateKey -> btcec.PrivateKey
var priv btcec.PrivateKey
if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() {
return nil, errors.New("invalid private key")
}
defer priv.Zero()
sig, err := btc_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey
if err != nil {
return nil, err
}
// Convert to Ethereum signature format with 'recovery id' v at the end.
v := sig[0] - 27
copy(sig, sig[1:])
sig[RecoveryIDOffset] = v
return sig, nil
}
// VerifySignature checks that the given public key created signature over hash.
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
// The signature should have the 64 byte [R || S] format.
func VerifySignature(pubkey, hash, signature []byte) bool {
if len(signature) != 64 {
return false
}
var r, s btcec.ModNScalar
if r.SetByteSlice(signature[:32]) {
return false // overflow
}
if s.SetByteSlice(signature[32:]) {
return false
}
sig := btc_ecdsa.NewSignature(&r, &s)
key, err := btcec.ParsePubKey(pubkey)
if err != nil {
return false
}
// Reject malleable signatures. libsecp256k1 does this check but btcec doesn't.
if s.IsOverHalfOrder() {
return false
}
return sig.Verify(hash, key)
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
if len(pubkey) != 33 {
return nil, errors.New("invalid compressed public key length")
}
key, err := btcec.ParsePubKey(pubkey)
if err != nil {
return nil, err
}
return key.ToECDSA(), nil
}
// CompressPubkey encodes a public key to the 33-byte compressed format. The
// provided PublicKey must be valid. Namely, the coordinates must not be larger
// than 32 bytes each, they must be less than the field prime, and it must be a
// point on the secp256k1 curve. This is the case for a PublicKey constructed by
// elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey
// when constructing a PrivateKey.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
// NOTE: the coordinates may be validated with
// btcec.ParsePubKey(FromECDSAPub(pubkey))
var x, y btcec.FieldVal
x.SetByteSlice(pubkey.X.Bytes())
y.SetByteSlice(pubkey.Y.Bytes())
return btcec.NewPublicKey(&x, &y).SerializeCompressed()
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return btcec.S256()
}