forked from fredRos/pyFFTW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pyfftw_numpy_interface.py
785 lines (619 loc) · 26.5 KB
/
test_pyfftw_numpy_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
# Copyright 2015 Knowledge Economy Developments Ltd
#
# Henry Gomersall
# heng@kedevelopments.co.uk
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
from pyfftw import interfaces, _supported_types, _all_types_np
from .test_pyfftw_base import run_test_suites
from ._get_default_args import get_default_args
from distutils.version import LooseVersion
import unittest
import numpy
from numpy import fft as np_fft
import warnings
import copy
warnings.filterwarnings('always')
if LooseVersion(numpy.version.version) <= LooseVersion('1.6.2'):
# We overwrite the broken _cook_nd_args with a fixed version.
from ._cook_nd_args import _cook_nd_args
numpy.fft.fftpack._cook_nd_args = _cook_nd_args
complex_dtypes = []
real_dtypes = []
if '32' in _supported_types:
complex_dtypes.extend([numpy.complex64]*2)
real_dtypes.extend([numpy.float16, numpy.float32])
if '64' in _supported_types:
complex_dtypes.append(numpy.complex128)
real_dtypes.append(numpy.float64)
if 'ld' in _supported_types:
complex_dtypes.append(numpy.clongdouble)
real_dtypes.append(numpy.longdouble)
def make_complex_data(shape, dtype):
ar, ai = dtype(numpy.random.randn(2, *shape))
return ar + 1j*ai
def make_real_data(shape, dtype):
return dtype(numpy.random.randn(*shape))
def _numpy_fft_has_norm_kwarg():
"""returns True if numpy's fft supports the norm keyword argument
This should be true for numpy >= 1.10
"""
# return LooseVersion(numpy.version.version) >= LooseVersion('1.10')
try:
np_fft.fft(numpy.ones(4), norm=None)
return True
except TypeError:
return False
if _numpy_fft_has_norm_kwarg() and numpy.__version__ < '1.13':
# use version of numpy.fft.rfft* with normalisation bug fixed
# The patched version here, corresponds to the following bugfix PR:
# https://github.com/numpy/numpy/pull/8445
from numpy.fft import fftpack as fftpk
def rfft_fix(a, n=None, axis=-1, norm=None):
# from numpy.fft import fftpack_lite as fftpack
# from numpy.fft.fftpack import _raw_fft, _unitary, _real_fft_cache
a = numpy.array(a, copy=True, dtype=float)
output = fftpk._raw_fft(a, n, axis, fftpk.fftpack.rffti,
fftpk.fftpack.rfftf, fftpk._real_fft_cache)
if fftpk._unitary(norm):
if n is None:
n = a.shape[axis]
output *= 1 / numpy.sqrt(n)
return output
def rfftn_fix(a, s=None, axes=None, norm=None):
a = numpy.array(a, copy=True, dtype=float)
s, axes = fftpk._cook_nd_args(a, s, axes)
a = rfft_fix(a, s[-1], axes[-1], norm)
for ii in range(len(axes)-1):
a = fftpk.fft(a, s[ii], axes[ii], norm)
return a
def rfft2_fix(a, s=None, axes=(-2, -1), norm=None):
return rfftn_fix(a, s, axes, norm)
np_fft.rfft = rfft_fix
np_fft.rfft2 = rfft2_fix
np_fft.rfftn = rfftn_fix
functions = {
'fft': 'complex',
'ifft': 'complex',
'rfft': 'r2c',
'irfft': 'c2r',
'rfftn': 'r2c',
'hfft': 'c2r',
'ihfft': 'r2c',
'irfftn': 'c2r',
'rfft2': 'r2c',
'irfft2': 'c2r',
'fft2': 'complex',
'ifft2': 'complex',
'fftn': 'complex',
'ifftn': 'complex'}
acquired_names = ('fftfreq', 'fftshift', 'ifftshift')
if LooseVersion(numpy.version.version) >= LooseVersion('1.8'):
acquired_names += ('rfftfreq', )
class InterfacesNumpyFFTTestModule(unittest.TestCase):
''' A really simple test suite to check the module works as expected.
'''
def test_acquired_names(self):
for each_name in acquired_names:
numpy_fft_attr = getattr(numpy.fft, each_name)
acquired_attr = getattr(interfaces.numpy_fft, each_name)
self.assertIs(numpy_fft_attr, acquired_attr)
class InterfacesNumpyFFTTestFFT(unittest.TestCase):
io_dtypes = {
'complex': (complex_dtypes, make_complex_data),
'r2c': (real_dtypes, make_real_data),
'c2r': (complex_dtypes, make_complex_data)}
validator_module = np_fft
test_interface = interfaces.numpy_fft
func = 'fft'
axes_kw = 'axis'
overwrite_input_flag = 'overwrite_input'
default_s_from_shape_slicer = slice(-1, None)
test_shapes = (
((100,), {}),
((128, 64), {'axis': 0}),
((128, 32), {'axis': -1}),
((59, 100), {}),
((59, 99), {'axis': -1}),
((59, 99), {'axis': 0}),
((32, 32, 4), {'axis': 1}),
((32, 32, 2), {'axis': 1, 'norm': 'ortho'}),
((64, 128, 16), {}),
)
# invalid_s_shapes is:
# (size, invalid_args, error_type, error_string)
invalid_args = (
((100,), ((100, 200),), TypeError, ''),
((100, 200), ((100, 200),), TypeError, ''),
((100,), (100, (-2, -1)), TypeError, ''),
((100,), (100, -20), IndexError, ''))
realinv = False
has_norm_kwarg = _numpy_fft_has_norm_kwarg()
@property
def test_data(self):
for test_shape, kwargs in self.test_shapes:
axes = self.axes_from_kwargs(kwargs)
s = self.s_from_kwargs(test_shape, kwargs)
if not self.has_norm_kwarg and 'norm' in kwargs:
kwargs.pop('norm')
if self.realinv:
test_shape = list(test_shape)
test_shape[axes[-1]] = test_shape[axes[-1]]//2 + 1
test_shape = tuple(test_shape)
yield test_shape, s, kwargs
def __init__(self, *args, **kwargs):
super(InterfacesNumpyFFTTestFFT, self).__init__(*args, **kwargs)
# Assume python 3, but keep backwards compatibility
if not hasattr(self, 'assertRaisesRegex'):
self.assertRaisesRegex = self.assertRaisesRegexp
def validate(self, array_type, test_shape, dtype,
s, kwargs, copy_func=copy.copy):
# Do it without the cache
# without:
interfaces.cache.disable()
self._validate(array_type, test_shape, dtype, s, kwargs,
copy_func=copy_func)
def munge_input_array(self, array, kwargs):
return array
def _validate(self, array_type, test_shape, dtype,
s, kwargs, copy_func=copy.copy):
input_array = self.munge_input_array(
array_type(test_shape, dtype), kwargs)
orig_input_array = copy_func(input_array)
np_input_array = numpy.asarray(input_array)
# Why are long double inputs copied to double precision? It's what
# numpy silently does anyways as of v1.10 but helps with backward
# compatibility and scipy.
# https://github.com/pyFFTW/pyFFTW/pull/189#issuecomment-356449731
if np_input_array.dtype == 'clongdouble':
np_input_array = numpy.complex128(input_array)
elif np_input_array.dtype == 'longdouble':
np_input_array = numpy.float64(input_array)
with warnings.catch_warnings(record=True) as w:
# We catch the warnings so as to pick up on when
# a complex array is turned into a real array
if 'axes' in kwargs:
validator_kwargs = {'axes': kwargs['axes']}
elif 'axis' in kwargs:
validator_kwargs = {'axis': kwargs['axis']}
else:
validator_kwargs = {}
if self.has_norm_kwarg and 'norm' in kwargs:
validator_kwargs['norm'] = kwargs['norm']
try:
test_out_array = getattr(self.validator_module, self.func)(
copy_func(np_input_array), s, **validator_kwargs)
except Exception as e:
interface_exception = None
try:
getattr(self.test_interface, self.func)(
copy_func(input_array), s, **kwargs)
except Exception as _interface_exception:
# It's necessary to assign the exception to the
# already defined variable in Python 3.
# See http://www.python.org/dev/peps/pep-3110/#semantic-changes
interface_exception = _interface_exception
# If the test interface raised, so must this.
self.assertEqual(type(interface_exception), type(e),
msg='Interface exception raised. ' +
'Testing for: ' + repr(e))
return
try:
output_array = getattr(self.test_interface, self.func)(
copy_func(np_input_array), s, **kwargs)
except NotImplementedError as e:
# check if exception due to missing precision
msg = repr(e)
if 'Rebuild pyFFTW with support for' in msg:
self.skipTest(msg)
else:
raise
if (functions[self.func] == 'r2c'):
if numpy.iscomplexobj(input_array):
if len(w) > 0:
# Make sure a warning is raised
self.assertIs(
w[-1].category, numpy.ComplexWarning)
self.assertTrue(
numpy.allclose(output_array, test_out_array,
rtol=1e-2, atol=1e-4))
if _all_types_np.get(np_input_array.real.dtype, "") in _supported_types:
# supported precisions should not be converted
self.assertEqual(np_input_array.real.dtype,
output_array.real.dtype)
if (not self.overwrite_input_flag in kwargs or
not kwargs[self.overwrite_input_flag]):
self.assertTrue(numpy.allclose(input_array,
orig_input_array))
return output_array
def axes_from_kwargs(self, kwargs):
default_args = get_default_args(
getattr(self.test_interface, self.func))
if 'axis' in kwargs:
axes = (kwargs['axis'],)
elif 'axes' in kwargs:
axes = kwargs['axes']
if axes is None:
axes = default_args['axes']
else:
if 'axis' in default_args:
# default 1D
axes = (default_args['axis'],)
else:
# default nD
axes = default_args['axes']
if axes is None:
axes = (-1,)
return axes
def s_from_kwargs(self, test_shape, kwargs):
''' Return either a scalar s or a tuple depending on
whether axis or axes is specified
'''
default_args = get_default_args(
getattr(self.test_interface, self.func))
if 'axis' in kwargs:
s = test_shape[kwargs['axis']]
elif 'axes' in kwargs:
axes = kwargs['axes']
if axes is not None:
s = []
for each_axis in axes:
s.append(test_shape[each_axis])
else:
# default nD
s = []
try:
for each_axis in default_args['axes']:
s.append(test_shape[each_axis])
except TypeError:
try:
s = list(test_shape[
self.default_s_from_shape_slicer])
except TypeError:
# We had an integer as the default, so force
# it to be a list
s = [test_shape[self.default_s_from_shape_slicer]]
else:
if 'axis' in default_args:
# default 1D
s = test_shape[default_args['axis']]
else:
# default nD
s = []
try:
for each_axis in default_args['axes']:
s.append(test_shape[each_axis])
except TypeError:
s = None
return s
def test_valid(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
s = None
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
def test_on_non_numpy_array(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
array_type = (lambda test_shape, dtype:
dtype_tuple[1](test_shape, dtype).tolist())
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
s = None
self.validate(array_type,
test_shape, dtype, s, kwargs)
def test_fail_on_invalid_s_or_axes_or_norm(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, args, exception, e_str in self.invalid_args:
input_array = dtype_tuple[1](test_shape, dtype)
if len(args) > 2 and not self.has_norm_kwarg:
# skip tests invovling norm argument if it isn't available
continue
self.assertRaisesRegex(exception, e_str,
getattr(self.test_interface, self.func),
*((input_array,) + args))
def test_same_sized_s(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
def test_bigger_s(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
try:
for each_axis, length in enumerate(s):
s[each_axis] += 2
except TypeError:
s += 2
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
def test_smaller_s(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
try:
for each_axis, length in enumerate(s):
s[each_axis] -= 2
except TypeError:
s -= 2
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
def check_arg(self, arg, arg_test_values, array_type, test_shape,
dtype, s, kwargs):
'''Check that the correct arg is passed to the builder'''
# We trust the builders to work as expected when passed
# the correct arg (the builders have their own unittests).
return_values = []
input_array = array_type(test_shape, dtype)
def fake_fft(*args, **kwargs):
return_values.append((args, kwargs))
return (args, kwargs)
try:
# Replace the function that is to be used
real_fft = getattr(self.test_interface, self.func)
setattr(self.test_interface, self.func, fake_fft)
_kwargs = kwargs.copy()
for each_value in arg_test_values:
_kwargs[arg] = each_value
builder_args = getattr(self.test_interface, self.func)(
input_array.copy(), s, **_kwargs)
self.assertTrue(builder_args[1][arg] == each_value)
# make sure it was called
self.assertTrue(len(return_values) > 0)
except:
raise
finally:
# Make sure we set it back
setattr(self.test_interface, self.func, real_fft)
# Validate it aswell
for each_value in arg_test_values:
_kwargs[arg] = each_value
builder_args = getattr(self.test_interface, self.func)(
input_array.copy(), s, **_kwargs)
self.validate(array_type, test_shape, dtype, s, _kwargs)
def test_auto_align_input(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
self.check_arg('auto_align_input', (True, False),
dtype_tuple[1], test_shape, dtype, s, kwargs)
def test_auto_contiguous_input(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
self.check_arg('auto_contiguous', (True, False),
dtype_tuple[1], test_shape, dtype, s, kwargs)
def test_bigger_and_smaller_s(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
i = -1
for test_shape, s, kwargs in self.test_data:
try:
for each_axis, length in enumerate(s):
s[each_axis] += i * 2
i *= i
except TypeError:
s += i * 2
i *= i
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
def test_dtype_coercian(self):
# Make sure we input a dtype that needs to be coerced
if functions[self.func] == 'r2c':
dtype_tuple = self.io_dtypes['complex']
else:
dtype_tuple = self.io_dtypes['r2c']
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
s = None
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
def test_planner_effort(self):
'''Test the planner effort arg
'''
dtype_tuple = self.io_dtypes[functions[self.func]]
test_shape = (16,)
for dtype in dtype_tuple[0]:
s = None
if self.axes_kw == 'axis':
kwargs = {'axis': -1}
else:
kwargs = {'axes': (-1,)}
for each_effort in ('FFTW_ESTIMATE', 'FFTW_MEASURE',
'FFTW_PATIENT', 'FFTW_EXHAUSTIVE'):
kwargs['planner_effort'] = each_effort
self.validate(
dtype_tuple[1], test_shape, dtype, s, kwargs)
kwargs['planner_effort'] = 'garbage'
self.assertRaisesRegex(ValueError, 'Invalid planner effort',
self.validate,
*(dtype_tuple[1], test_shape, dtype, s, kwargs))
def test_threads_arg(self):
'''Test the threads argument
'''
dtype_tuple = self.io_dtypes[functions[self.func]]
test_shape = (16,)
for dtype in dtype_tuple[0]:
s = None
if self.axes_kw == 'axis':
kwargs = {'axis': -1}
else:
kwargs = {'axes': (-1,)}
self.check_arg('threads', (1, 2, 5, 10),
dtype_tuple[1], test_shape, dtype, s, kwargs)
kwargs['threads'] = 'bleh'
# Should not work
self.assertRaises(TypeError,
self.validate,
*(dtype_tuple[1], test_shape, dtype, s, kwargs))
def test_overwrite_input(self):
'''Test the overwrite_input flag
'''
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, _kwargs in self.test_data:
s = None
kwargs = _kwargs.copy()
self.validate(dtype_tuple[1], test_shape, dtype, s, kwargs)
self.check_arg(self.overwrite_input_flag, (True, False),
dtype_tuple[1], test_shape, dtype, s, kwargs)
def test_input_maintained(self):
'''Test to make sure the input is maintained by default.
'''
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
input_array = dtype_tuple[1](test_shape, dtype)
orig_input_array = input_array.copy()
getattr(self.test_interface, self.func)(
input_array, s, **kwargs)
self.assertTrue(
numpy.alltrue(input_array == orig_input_array))
def test_on_non_writeable_array_issue_92(self):
'''Test to make sure that locked arrays work.
Regression test for issue 92.
'''
def copy_with_writeable(array_to_copy):
array_copy = array_to_copy.copy()
array_copy.flags.writeable = array_to_copy.flags.writeable
return array_copy
dtype_tuple = self.io_dtypes[functions[self.func]]
def array_type(test_shape, dtype):
a = dtype_tuple[1](test_shape, dtype)
a.flags.writeable = False
return a
for dtype in dtype_tuple[0]:
for test_shape, s, kwargs in self.test_data:
s = None
self.validate(array_type,
test_shape, dtype, s, kwargs,
copy_func=copy_with_writeable)
def test_overwrite_input_for_issue_92(self):
'''Tests that trying to overwrite a locked array fails.
'''
a = numpy.zeros((4,))
a.flags.writeable = False
self.assertRaisesRegex(
ValueError,
'overwrite_input cannot be True when the ' +
'input array flags.writeable is False',
interfaces.numpy_fft.fft,
a, overwrite_input=True)
class InterfacesNumpyFFTTestIFFT(InterfacesNumpyFFTTestFFT):
func = 'ifft'
class InterfacesNumpyFFTTestRFFT(InterfacesNumpyFFTTestFFT):
func = 'rfft'
class InterfacesNumpyFFTTestIRFFT(InterfacesNumpyFFTTestFFT):
func = 'irfft'
realinv = True
class InterfacesNumpyFFTTestHFFT(InterfacesNumpyFFTTestFFT):
func = 'hfft'
realinv = True
class InterfacesNumpyFFTTestIHFFT(InterfacesNumpyFFTTestFFT):
func = 'ihfft'
class InterfacesNumpyFFTTestFFT2(InterfacesNumpyFFTTestFFT):
axes_kw = 'axes'
func = 'ifft2'
test_shapes = (
((128, 64), {'axes': None}),
((128, 32), {'axes': None}),
((128, 32, 4), {'axes': (0, 2)}),
((59, 100), {'axes': (-2, -1)}),
((32, 32), {'axes': (-2, -1), 'norm': 'ortho'}),
((64, 128, 16), {'axes': (0, 2)}),
((4, 6, 8, 4), {'axes': (0, 3)}),
)
invalid_args = (
((100,), ((100, 200),), ValueError, 'Shape error'),
((100, 200), ((100, 200, 100),), ValueError, 'Shape error'),
((100,), ((100, 200), (-3, -2, -1)), ValueError, 'Shape error'),
((100, 200), (100, -1), TypeError, ''),
((100, 200), ((100, 200), (-3, -2)), IndexError, 'Invalid axes'),
((100, 200), ((100,), (-3,)), IndexError, 'Invalid axes'),
# pass invalid normalisation string
((100, 200), ((100,), (-3,), 'invalid_norm'), ValueError, ''))
def test_shape_and_s_different_lengths(self):
dtype_tuple = self.io_dtypes[functions[self.func]]
for dtype in dtype_tuple[0]:
for test_shape, s, _kwargs in self.test_data:
kwargs = copy.copy(_kwargs)
try:
s = s[1:]
except TypeError:
self.skipTest('Not meaningful test on 1d arrays.')
del kwargs['axes']
self.validate(dtype_tuple[1],
test_shape, dtype, s, kwargs)
class InterfacesNumpyFFTTestIFFT2(InterfacesNumpyFFTTestFFT2):
func = 'ifft2'
class InterfacesNumpyFFTTestRFFT2(InterfacesNumpyFFTTestFFT2):
func = 'rfft2'
class InterfacesNumpyFFTTestIRFFT2(InterfacesNumpyFFTTestFFT2):
func = 'irfft2'
realinv = True
class InterfacesNumpyFFTTestFFTN(InterfacesNumpyFFTTestFFT2):
func = 'ifftn'
test_shapes = (
((128, 32, 4), {'axes': None}),
((64, 128, 16), {'axes': (0, 1, 2)}),
((4, 6, 8, 4), {'axes': (0, 3, 1)}),
((4, 6, 4, 4), {'axes': (0, 3, 1), 'norm': 'ortho'}),
((4, 6, 8, 4), {'axes': (0, 3, 1, 2)}),
)
class InterfacesNumpyFFTTestIFFTN(InterfacesNumpyFFTTestFFTN):
func = 'ifftn'
class InterfacesNumpyFFTTestRFFTN(InterfacesNumpyFFTTestFFTN):
func = 'rfftn'
class InterfacesNumpyFFTTestIRFFTN(InterfacesNumpyFFTTestFFTN):
func = 'irfftn'
realinv = True
test_cases = (
InterfacesNumpyFFTTestModule,
InterfacesNumpyFFTTestFFT,
InterfacesNumpyFFTTestIFFT,
InterfacesNumpyFFTTestRFFT,
InterfacesNumpyFFTTestIRFFT,
InterfacesNumpyFFTTestHFFT,
InterfacesNumpyFFTTestIHFFT,
InterfacesNumpyFFTTestFFT2,
InterfacesNumpyFFTTestIFFT2,
InterfacesNumpyFFTTestRFFT2,
InterfacesNumpyFFTTestIRFFT2,
InterfacesNumpyFFTTestFFTN,
InterfacesNumpyFFTTestIFFTN,
InterfacesNumpyFFTTestRFFTN,
InterfacesNumpyFFTTestIRFFTN,)
#test_set = {'InterfacesNumpyFFTTestHFFT': ('test_valid',)}
test_set = None
if __name__ == '__main__':
run_test_suites(test_cases, test_set)