forked from microsoft/DialoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_utils.py
91 lines (72 loc) · 3.77 KB
/
demo_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import logging
from pytorch_pretrained_bert.file_utils import http_get
logger = logging.getLogger(__name__)
# Note that the model size is roughly half of the GPT model because our model is saved by fp16
LSP_MODEL_URL = {
'multiref': {
'large_fs': 'https://convaisharables.blob.core.windows.net/lsp/multiref/large_fs.pkl',
'medium_fs': 'https://convaisharables.blob.core.windows.net/lsp/multiref/medium_fs.pkl',
'medium_ft': 'https://convaisharables.blob.core.windows.net/lsp/multiref/medium_ft.pkl',
'small_fs': 'https://convaisharables.blob.core.windows.net/lsp/multiref/small_fs.pkl',
'small_ft': 'https://convaisharables.blob.core.windows.net/lsp/multiref/small_ft.pkl'
},
'dstc': {
'medium_ft': 'https://convaisharables.blob.core.windows.net/lsp/DSTC/medium_ft.pkl'
}
}
# GPT model could be downloaded from huggingface repo
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {
"small": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
"medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
"large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin"
}
CONFIG_FILE = {
'small': 'https://convaisharables.blob.core.windows.net/lsp/117M/config.json',
'medium': 'https://convaisharables.blob.core.windows.net/lsp/345M/config.json',
'large': 'https://convaisharables.blob.core.windows.net/lsp/1542M/config.json'
}
VOCAB_FILE = {
'small': 'https://convaisharables.blob.core.windows.net/lsp/117M/vocab.json',
'medium': 'https://convaisharables.blob.core.windows.net/lsp/345M/vocab.json',
'large': 'https://convaisharables.blob.core.windows.net/lsp/1542M/vocab.json'
}
MERGE_FILE = {
'small': 'https://convaisharables.blob.core.windows.net/lsp/117M/merges.txt',
'medium': 'https://convaisharables.blob.core.windows.net/lsp/345M/merges.txt',
'large': 'https://convaisharables.blob.core.windows.net/lsp/1542M/merges.txt'
}
def download_file(url, folder):
if not os.path.exists(folder):
os.makedirs(folder, exist_ok=True)
file_name = os.path.basename(url)
if 'pytorch_model.bin' in file_name:
file_name = 'pytorch_model.bin'
if os.path.isfile(os.path.join(folder, file_name)):
logger.info(f'{os.path.join(folder, file_name)} exists, return!')
return
with open(os.path.join(folder, file_name), 'wb') as f:
http_get(url, f)
def download_model_folder(model_size, dataset=None, from_scratch=None, DATA_FOLDER=None):
assert DATA_FOLDER is not None, 'DATA_FOLDER cannot be None'
assert model_size in ['small', 'medium', 'large'], 'model size should be one of \'small\', \'medium\' or \'large\''
target_folder = os.path.join(DATA_FOLDER, model_size)
download_file(CONFIG_FILE[model_size], target_folder)
download_file(VOCAB_FILE[model_size], target_folder)
download_file(MERGE_FILE[model_size], target_folder)
download_file(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP[model_size], target_folder)
if dataset is not None:
assert dataset in ['multiref', 'dstc'], \
'dataset has to be \'multiref\' or \'dstc\''
assert from_scratch in [True, False], 'from scratch has to be True or False'
if from_scratch:
model_train_type = model_size + '_fs'
else:
model_train_type = model_size + '_ft'
if model_train_type not in LSP_MODEL_URL[dataset]:
k = ','.join(list(LSP_MODEL_URL[dataset].keys()))
raise ValueError(f'\'{model_train_type}\' not exist for dataset \'{dataset}\', please choose from [{k}]')
download_file(LSP_MODEL_URL[dataset][model_train_type], target_folder)
return target_folder