Skip to content

Commit c0c1205

Browse files
albertzZettelkasten
andcommitted
CumConcatLayer
This is for generalized self attention (#391). Co-authored-by: Frithjof <fmpetrick@gmail.com>
1 parent 017d777 commit c0c1205

File tree

1 file changed

+167
-0
lines changed

1 file changed

+167
-0
lines changed

returnn/tf/layers/rec.py

Lines changed: 167 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8523,3 +8523,170 @@ def get_out_data_from_opts(cls, name, sources, n_out, **kwargs):
85238523
kind=DimensionTag.Types.Spatial, description="%s_rel_pos_enc_time" % name, dimension=None)
85248524
data = data.copy_template_new_dim_tags((dummy_dim_tag, time_dim_tag, feature_dim_tag))
85258525
return data
8526+
8527+
8528+
class CumConcatLayer(_ConcatInputLayer):
8529+
"""
8530+
Concatenates all previous frames of a time-axis.
8531+
Like :class:`CumsumLayer` uses `sum`, this layer uses `concat`.
8532+
8533+
This layer can be used as a base for auto-regressive self-attention.
8534+
8535+
This layer expects to be inside a :class:`RecLayer`.
8536+
8537+
Inside a rec loop (not optimized out),
8538+
this will concatenate the current input
8539+
to the previous accumulated inputs.
8540+
For an input of shape `input_shape`,
8541+
it will output a tensor of shape `[new_dim] + input_shape`.
8542+
`new_dim` is a special dimension, usually of length `i`,
8543+
where `i` is the current loop frame,
8544+
i.e. the length increases in every loop frame.
8545+
`new_dim` is specified by a separate own dim tag.
8546+
For example, in the first frame,
8547+
this will be of shape `[1] + input_shape`,
8548+
in the second frame shape `[2] + input_shape`,
8549+
and so on,
8550+
and in the last frame shape `[T] + input_shape`.
8551+
8552+
Outside the rec loop (optimized out),
8553+
this layer expects an input with the time dim of the rec layer,
8554+
and returns the input as-is,
8555+
but replacing the time dim tag with the dim tag `new_dim`
8556+
converted as outside the loop.
8557+
8558+
Normally the optimization should not matter for the user,
8559+
i.e. for the user, the logical behavior is always as being inside the rec loop.
8560+
Outside the loop,
8561+
the output represents a tensor of shape `[T, new_dim] + input_shape`,
8562+
although we actually have another `new_dim` outside the loop,
8563+
and `T` is not actually there,
8564+
but we still have all the information,
8565+
because the last frame has all information.
8566+
This `new_dim` outside the loop stores all the dynamic seq lengths
8567+
per frame of the loop, i.e. the dyn seq len are extended of shape [B,T] or [T]
8568+
(unlike usually just [B]).
8569+
This way following layers use different seq lengths of `new_dim` for different loop frames,
8570+
just like if the `T` dim would actually exist.
8571+
"""
8572+
layer_class = "cum_concat"
8573+
recurrent = True # order matters
8574+
8575+
def __init__(self, new_dim, **kwargs):
8576+
"""
8577+
:param DimensionTag new_dim:
8578+
"""
8579+
super(CumConcatLayer, self).__init__(**kwargs)
8580+
rec_layer = self.network.get_rec_parent_layer(inside_loop=False)
8581+
assert rec_layer, "%r must be used inside a RecLayer" % self
8582+
out_axis = self.output.get_axis_from_description(new_dim)
8583+
new_dim_ = self.output.dim_tags[out_axis]
8584+
8585+
if not self.input_data.has_axis(rec_layer.time_dim_tag): # inside loop
8586+
current_data = self.input_data.copy_compatible_to(self.output, unbroadcast=False)
8587+
current_frame = current_data.placeholder # [B, 1, ..., D]
8588+
last_frames = self._rec_previous_layer.rec_vars_outputs["state"] # [B, t, ..., D]
8589+
concat_frames = tf.concat([last_frames, current_frame], axis=out_axis) # [B, t+1, ..., D]
8590+
self.rec_vars_outputs["state"] = concat_frames
8591+
self.output.placeholder = concat_frames
8592+
8593+
if not new_dim_.dyn_size_ext:
8594+
# Unbroadcasting to [B] is not needed because any layers operating on this
8595+
# should be able to handle extended dyn sizes.
8596+
# Clipping it to the max length for sequences in the loop which are already ended
8597+
# (i.e. considering the end flag)
8598+
# is also not needed because any calculations after the end are irrelevant.
8599+
# Note: In case we have some initial state/output, this can be extended.
8600+
dyn_size = self.network.get_rec_step_index() + 1 # scalar
8601+
new_dim_.dyn_size_ext = Data(
8602+
name="%s:cum-concat:size-inside" % self.name,
8603+
dim_tags=[], # scalar
8604+
placeholder=dyn_size, dtype="int32", batch=self.output.batch)
8605+
8606+
else: # outside loop
8607+
# If not inside a rec loop, this layer is a no-op on the tensor.
8608+
self.output.placeholder = self.input_data.placeholder
8609+
8610+
# However, we used new dim tags, which were already prepared.
8611+
# We now must fill in the extended dynamic size information.
8612+
if not new_dim_.dyn_size_ext:
8613+
# This must match the logic above for inside the loop.
8614+
# Note: In case we have some initial state/output, this can be extended.
8615+
dyn_size = tf.range(tf.math.reduce_max(rec_layer.time_dim_tag.dyn_size)) + 1 # [T]
8616+
new_dim_.dyn_size_ext = Data(
8617+
name="%s:cum-concat:size-outside" % self.name,
8618+
dim_tags=[rec_layer.time_dim_tag],
8619+
placeholder=dyn_size, dtype="int32", batch=self.output.batch)
8620+
8621+
@classmethod
8622+
def get_out_data_from_opts(cls, name, network, sources, new_dim, **kwargs):
8623+
"""
8624+
:param str name:
8625+
:param returnn.tf.network.TFNetwork network:
8626+
:param list[LayerBase] sources:
8627+
:param DimensionTag new_dim:
8628+
:rtype: Data
8629+
"""
8630+
input_data = get_concat_sources_data_template(sources, name="%s_output" % name)
8631+
assert network.is_inside_rec_layer(inside_loop=False), "CumConcatLayer %r must be used inside a RecLayer" % name
8632+
rec_time_dim = network.get_inside_rec_time_dim(inside_loop=False)
8633+
assert rec_time_dim
8634+
ctx = network.get_control_flow_ctx()
8635+
assert ctx == input_data.control_flow_ctx
8636+
new_dim_in_ctx = new_dim.get_for_batch_ctx(batch=input_data.batch, ctx=ctx)
8637+
8638+
if not input_data.has_axis(rec_time_dim): # inside loop
8639+
assert ctx and ctx.is_loop() and ctx.loop_spatial_dim == rec_time_dim
8640+
# Currently SelectSearchSourcesLayer assumes that all rec_vars_outputs are batch-major.
8641+
# Therefore we here copy the input as batch-major, and then add the time axis at axis 1.
8642+
# In the future, when SelectSearchSourcesLayer has support for this, we can change this to operate on axis 0,
8643+
# which should be more efficient
8644+
out = input_data.copy_as_batch_major()
8645+
out = out.copy_add_dim_by_tag(new_dim_in_ctx, unbroadcast=True, axis=1)
8646+
return out
8647+
8648+
else: # outside loop
8649+
# Assume that the input has the time dim from the rec layer.
8650+
axis = input_data.get_axis_from_description(rec_time_dim)
8651+
return input_data.copy_template_replace_dim_tag(axis=axis, new_dim_tag=new_dim_in_ctx)
8652+
8653+
# noinspection PyMethodOverriding
8654+
@classmethod
8655+
def get_rec_initial_extra_outputs(cls, network, batch_dim, rec_layer, sources, output, new_dim, **kwargs):
8656+
"""
8657+
:param returnn.tf.network.TFNetwork network:
8658+
:param tf.Tensor batch_dim:
8659+
:param returnn.tf.layers.rec.RecLayer|LayerBase rec_layer:
8660+
:param list[LayerBase] sources:
8661+
:param Data output:
8662+
:param DimensionTag new_dim:
8663+
:rtype: dict[str,tf.Tensor]
8664+
"""
8665+
if network.is_inside_rec_layer():
8666+
shape = []
8667+
for tag in output.dim_tags:
8668+
if tag.is_batch_dim():
8669+
shape.append(batch_dim)
8670+
elif tag == new_dim:
8671+
shape.append(0)
8672+
elif tag.dimension is not None:
8673+
shape.append(tag.dimension)
8674+
else:
8675+
assert tag.dyn_size is not None
8676+
shape.append(tf.math.reduce_max(tag.dyn_size))
8677+
return {"state": tf.zeros(shape, dtype=output.dtype)}
8678+
else:
8679+
return {}
8680+
8681+
@classmethod
8682+
def get_rec_initial_extra_outputs_shape_invariants(cls, network, sources, output, **kwargs):
8683+
"""
8684+
:param returnn.tf.network.TFNetwork network:
8685+
:param list[LayerBase] sources:
8686+
:param Data output:
8687+
:rtype: dict[str, tf.TensorShape]
8688+
"""
8689+
if network.is_inside_rec_layer():
8690+
return {"state": tf.TensorShape(output.batch_shape)}
8691+
else:
8692+
return {}

0 commit comments

Comments
 (0)