@@ -8513,3 +8513,178 @@ def get_out_data_from_opts(cls, name, sources, n_out, **kwargs):
85138513 kind = DimensionTag .Types .Spatial , description = "%s_rel_pos_enc_time" % name , dimension = None )
85148514 data = data .copy_template_new_dim_tags ((dummy_dim_tag , time_dim_tag , feature_dim_tag ))
85158515 return data
8516+
8517+
8518+ class CumConcatLayer (_ConcatInputLayer ):
8519+ """
8520+ Concatenates all previous frames of a time-axis.
8521+ Like :class:`CumsumLayer` uses `sum`, this layer uses `concat`.
8522+
8523+ This layer can be used as a base for auto-regressive self-attention.
8524+
8525+ This layer expects to be inside a :class:`RecLayer`.
8526+
8527+ Inside a rec loop (not optimized out),
8528+ this will concatenate the current input
8529+ to the previous accumulated inputs.
8530+ For an input of shape `input_shape`,
8531+ it will output a tensor of shape `[new_dim] + input_shape`.
8532+ `new_dim` is a special dimension, usually of length `i`,
8533+ where `i` is the current loop frame,
8534+ i.e. the length increases in every loop frame.
8535+ `new_dim` is specified by a separate own dim tag.
8536+ For example, in the first frame,
8537+ this will be of shape `[1] + input_shape`,
8538+ in the second frame shape `[2] + input_shape`,
8539+ and so on,
8540+ and in the last frame shape `[T] + input_shape`.
8541+
8542+ Outside the rec loop (optimized out),
8543+ this layer expects an input with the time dim of the rec layer,
8544+ and returns the input as-is,
8545+ but replacing the time dim tag with the dim tag `new_dim`
8546+ converted as outside the loop.
8547+
8548+ Normally the optimization should not matter for the user,
8549+ i.e. for the user, the logical behavior is always as being inside the rec loop.
8550+ Outside the loop,
8551+ the output represents a tensor of shape `[T, new_dim] + input_shape`,
8552+ although we actually have another `new_dim` outside the loop,
8553+ and `T` is not actually there,
8554+ but we still have all the information,
8555+ because the last frame has all information.
8556+ This `new_dim` outside the loop stores all the dynamic seq lengths
8557+ per frame of the loop, i.e. the dyn seq len are extended of shape [B,T] or [T]
8558+ (unlike usually just [B]).
8559+ This way following layers use different seq lengths of `new_dim` for different loop frames,
8560+ just like if the `T` dim would actually exist.
8561+ """
8562+ layer_class = "cum_concat"
8563+ recurrent = True # order matters
8564+
8565+ def __init__ (self , new_dim , ** kwargs ):
8566+ """
8567+ :param DimensionTag new_dim:
8568+ """
8569+ super (CumConcatLayer , self ).__init__ (** kwargs )
8570+ rec_layer = self .network .get_rec_parent_layer (inside_loop = False )
8571+ assert rec_layer , "%r must be used inside a RecLayer" % self
8572+ out_axis = self .output .get_axis_from_description (new_dim )
8573+ new_dim_ = self .output .dim_tags [out_axis ]
8574+
8575+ if not self .input_data .has_axis (rec_layer .time_dim_tag ): # inside loop
8576+ current_data = self .input_data .copy_compatible_to (self .output , unbroadcast = False )
8577+ current_frame = current_data .placeholder # [B, 1, ..., D]
8578+ last_frames = self ._rec_previous_layer .rec_vars_outputs ["state" ] # [B, t, ..., D]
8579+ concat_frames = tf .concat ([last_frames , current_frame ], axis = out_axis ) # [B, t+1, ..., D]
8580+ self .rec_vars_outputs ["state" ] = concat_frames
8581+ self .output .placeholder = concat_frames
8582+
8583+ if not new_dim_ .dyn_size_ext :
8584+ # Unbroadcasting to [B] is not needed because any layers operating on this
8585+ # should be able to handle extended dyn sizes.
8586+ # Clipping it to the max length for sequences in the loop which are already ended
8587+ # (i.e. considering the end flag)
8588+ # is also not needed because any calculations after the end are irrelevant.
8589+ # Note: In case we have some initial state/output, this can be extended.
8590+ dyn_size = self .network .get_rec_step_index () + 1 # scalar
8591+ new_dim_ .dyn_size_ext = Data (
8592+ name = "%s:cum-concat:size-inside" % self .name ,
8593+ dim_tags = [], # scalar
8594+ placeholder = dyn_size , dtype = "int32" )
8595+
8596+ else : # outside loop
8597+ # If not inside a rec loop, this layer is a no-op on the tensor.
8598+ self .output .placeholder = self .input_data .placeholder
8599+
8600+ # However, we used new dim tags, which were already prepared.
8601+ # We now must fill in the extended dynamic size information.
8602+ if not new_dim_ .dyn_size_ext :
8603+ # This must match the logic above for inside the loop.
8604+ # Note: In case we have some initial state/output, this can be extended.
8605+ dyn_size = tf .range (tf .math .reduce_max (rec_layer .time_dim_tag .dyn_size )) + 1 # [T]
8606+ new_dim_ .dyn_size_ext = Data (
8607+ name = "%s:cum-concat:size-outside" % self .name ,
8608+ dim_tags = [rec_layer .time_dim_tag ],
8609+ placeholder = dyn_size , dtype = "int32" )
8610+
8611+ @classmethod
8612+ def get_out_data_from_opts (cls , name , network , sources , new_dim , ** kwargs ):
8613+ """
8614+ :param str name:
8615+ :param returnn.tf.network.TFNetwork network:
8616+ :param list[LayerBase] sources:
8617+ :param DimensionTag new_dim:
8618+ :rtype: Data
8619+ """
8620+ assert network .is_inside_rec_layer (inside_loop = False ), "CumConcatLayer %r must be used inside a RecLayer" % name
8621+ rec_time_dim = network .get_inside_rec_time_dim (inside_loop = False )
8622+ assert rec_time_dim
8623+ new_dim_base = new_dim .get_same_base ()
8624+ if new_dim_base .per_spatial_frame is None :
8625+ new_dim_base .per_spatial_frame = rec_time_dim
8626+ else :
8627+ assert new_dim_base .per_spatial_frame == rec_time_dim
8628+
8629+ input_data = get_concat_sources_data_template (sources , name = "%s_output" % name )
8630+ if not input_data .has_axis (rec_time_dim ): # inside loop
8631+ # Currently SelectSearchSourcesLayer assumes that all rec_vars_outputs are batch-major.
8632+ # Therefore we here copy the input as batch-major, and then add the time axis at axis 1.
8633+ # In the future, when SelectSearchSourcesLayer has support for this, we can change this to operate on axis 0,
8634+ # which should be more efficient
8635+ out = input_data .copy_as_batch_major ()
8636+ out = out .copy_add_dim_by_tag (new_dim_base , unbroadcast = True , axis = 1 )
8637+ return out
8638+
8639+ else : # outside loop
8640+ if not new_dim_base .per_spatial_frame_accumulated :
8641+ new_dim_accum = DimensionTag (
8642+ kind = new_dim_base .kind , description = "%s:accumulated" % name )
8643+ new_dim_accum .declare_same_as (new_dim_base )
8644+ new_dim_base .per_spatial_frame_accumulated = new_dim_accum
8645+ else :
8646+ new_dim_accum = new_dim_base .per_spatial_frame_accumulated
8647+ # Assume that the input has the time dim from the rec layer.
8648+ axis = input_data .get_axis_from_description (rec_time_dim )
8649+ return input_data .copy_template_replace_dim_tag (axis = axis , new_dim_tag = new_dim_accum )
8650+
8651+ # noinspection PyMethodOverriding
8652+ @classmethod
8653+ def get_rec_initial_extra_outputs (cls , network , batch_dim , rec_layer , sources , output , new_dim , ** kwargs ):
8654+ """
8655+ :param returnn.tf.network.TFNetwork network:
8656+ :param tf.Tensor batch_dim:
8657+ :param returnn.tf.layers.rec.RecLayer|LayerBase rec_layer:
8658+ :param list[LayerBase] sources:
8659+ :param Data output:
8660+ :param DimensionTag new_dim:
8661+ :rtype: dict[str,tf.Tensor]
8662+ """
8663+ if network .is_inside_rec_layer ():
8664+ shape = []
8665+ for tag in output .dim_tags :
8666+ if tag .is_batch_dim ():
8667+ shape .append (batch_dim )
8668+ elif tag == new_dim :
8669+ shape .append (0 )
8670+ elif tag .dimension is not None :
8671+ shape .append (tag .dimension )
8672+ else :
8673+ assert tag .dyn_size is not None
8674+ shape .append (tf .math .reduce_max (tag .dyn_size ))
8675+ return {"state" : tf .zeros (shape , dtype = output .dtype )}
8676+ else :
8677+ return {}
8678+
8679+ @classmethod
8680+ def get_rec_initial_extra_outputs_shape_invariants (cls , network , sources , output , ** kwargs ):
8681+ """
8682+ :param returnn.tf.network.TFNetwork network:
8683+ :param list[LayerBase] sources:
8684+ :param Data output:
8685+ :rtype: dict[str, tf.TensorShape]
8686+ """
8687+ if network .is_inside_rec_layer ():
8688+ return {"state" : tf .TensorShape (output .batch_shape )}
8689+ else :
8690+ return {}
0 commit comments