@@ -8496,3 +8496,178 @@ def get_out_data_from_opts(cls, name, sources, n_out, **kwargs):
84968496 kind = DimensionTag .Types .Spatial , description = "%s_rel_pos_enc_time" % name , dimension = None )
84978497 data = data .copy_template_new_dim_tags ((dummy_dim_tag , time_dim_tag , feature_dim_tag ))
84988498 return data
8499+
8500+
8501+ class CumConcatLayer (_ConcatInputLayer ):
8502+ """
8503+ Concatenates all previous frames of a time-axis.
8504+ Like :class:`CumsumLayer` uses `sum`, this layer uses `concat`.
8505+
8506+ This layer can be used as a base for auto-regressive self-attention.
8507+
8508+ This layer expects to be inside a :class:`RecLayer`.
8509+
8510+ Inside a rec loop (not optimized out),
8511+ this will concatenate the current input
8512+ to the previous accumulated inputs.
8513+ For an input of shape `input_shape`,
8514+ it will output a tensor of shape `[new_dim] + input_shape`.
8515+ `new_dim` is a special dimension, usually of length `i`,
8516+ where `i` is the current loop frame,
8517+ i.e. the length increases in every loop frame.
8518+ `new_dim` is specified by a separate own dim tag.
8519+ For example, in the first frame,
8520+ this will be of shape `[1] + input_shape`,
8521+ in the second frame shape `[2] + input_shape`,
8522+ and so on,
8523+ and in the last frame shape `[T] + input_shape`.
8524+
8525+ Outside the rec loop (optimized out),
8526+ this layer expects an input with the time dim of the rec layer,
8527+ and returns the input as-is,
8528+ but replacing the time dim tag with the dim tag `new_dim`
8529+ converted as outside the loop.
8530+
8531+ Normally the optimization should not matter for the user,
8532+ i.e. for the user, the logical behavior is always as being inside the rec loop.
8533+ Outside the loop,
8534+ the output represents a tensor of shape `[T, new_dim] + input_shape`,
8535+ although we actually have another `new_dim` outside the loop,
8536+ and `T` is not actually there,
8537+ but we still have all the information,
8538+ because the last frame has all information.
8539+ This `new_dim` outside the loop stores all the dynamic seq lengths
8540+ per frame of the loop, i.e. the dyn seq len are extended of shape [B,T] or [T]
8541+ (unlike usually just [B]).
8542+ This way following layers use different seq lengths of `new_dim` for different loop frames,
8543+ just like if the `T` dim would actually exist.
8544+ """
8545+ layer_class = "cum_concat"
8546+ recurrent = True # order matters
8547+
8548+ def __init__ (self , new_dim , ** kwargs ):
8549+ """
8550+ :param DimensionTag new_dim:
8551+ """
8552+ super (CumConcatLayer , self ).__init__ (** kwargs )
8553+ rec_layer = self .network .get_rec_parent_layer (inside_loop = False )
8554+ assert rec_layer , "%r must be used inside a RecLayer" % self
8555+ out_axis = self .output .get_axis_from_description (new_dim )
8556+ new_dim_ = self .output .dim_tags [out_axis ]
8557+
8558+ if not self .input_data .has_axis (rec_layer .time_dim_tag ): # inside loop
8559+ current_data = self .input_data .copy_compatible_to (self .output , unbroadcast = False )
8560+ current_frame = current_data .placeholder # [B, 1, ..., D]
8561+ last_frames = self ._rec_previous_layer .rec_vars_outputs ["state" ] # [B, t, ..., D]
8562+ concat_frames = tf .concat ([last_frames , current_frame ], axis = out_axis ) # [B, t+1, ..., D]
8563+ self .rec_vars_outputs ["state" ] = concat_frames
8564+ self .output .placeholder = concat_frames
8565+
8566+ if not new_dim_ .dyn_size_ext :
8567+ # Unbroadcasting to [B] is not needed because any layers operating on this
8568+ # should be able to handle extended dyn sizes.
8569+ # Clipping it to the max length for sequences in the loop which are already ended
8570+ # (i.e. considering the end flag)
8571+ # is also not needed because any calculations after the end are irrelevant.
8572+ # Note: In case we have some initial state/output, this can be extended.
8573+ dyn_size = self .network .get_rec_step_index () + 1 # scalar
8574+ new_dim_ .dyn_size_ext = Data (
8575+ name = "%s:cum-concat:size-inside" % self .name ,
8576+ dim_tags = [], # scalar
8577+ placeholder = dyn_size , dtype = "int32" )
8578+
8579+ else : # outside loop
8580+ # If not inside a rec loop, this layer is a no-op on the tensor.
8581+ self .output .placeholder = self .input_data .placeholder
8582+
8583+ # However, we used new dim tags, which were already prepared.
8584+ # We now must fill in the extended dynamic size information.
8585+ if not new_dim_ .dyn_size_ext :
8586+ # This must match the logic above for inside the loop.
8587+ # Note: In case we have some initial state/output, this can be extended.
8588+ dyn_size = tf .range (tf .math .reduce_max (rec_layer .time_dim_tag .dyn_size )) + 1 # [T]
8589+ new_dim_ .dyn_size_ext = Data (
8590+ name = "%s:cum-concat:size-outside" % self .name ,
8591+ dim_tags = [rec_layer .time_dim_tag ],
8592+ placeholder = dyn_size , dtype = "int32" )
8593+
8594+ @classmethod
8595+ def get_out_data_from_opts (cls , name , network , sources , new_dim , ** kwargs ):
8596+ """
8597+ :param str name:
8598+ :param returnn.tf.network.TFNetwork network:
8599+ :param list[LayerBase] sources:
8600+ :param DimensionTag new_dim:
8601+ :rtype: Data
8602+ """
8603+ assert network .is_inside_rec_layer (inside_loop = False ), "CumConcatLayer %r must be used inside a RecLayer" % name
8604+ rec_time_dim = network .get_inside_rec_time_dim (inside_loop = False )
8605+ assert rec_time_dim
8606+ new_dim_base = new_dim .get_same_base ()
8607+ if new_dim_base .per_spatial_frame is None :
8608+ new_dim_base .per_spatial_frame = rec_time_dim
8609+ else :
8610+ assert new_dim_base .per_spatial_frame == rec_time_dim
8611+
8612+ input_data = get_concat_sources_data_template (sources , name = "%s_output" % name )
8613+ if not input_data .has_axis (rec_time_dim ): # inside loop
8614+ # Currently SelectSearchSourcesLayer assumes that all rec_vars_outputs are batch-major.
8615+ # Therefore we here copy the input as batch-major, and then add the time axis at axis 1.
8616+ # In the future, when SelectSearchSourcesLayer has support for this, we can change this to operate on axis 0,
8617+ # which should be more efficient
8618+ out = input_data .copy_as_batch_major ()
8619+ out = out .copy_add_dim_by_tag (new_dim_base , unbroadcast = True , axis = 1 )
8620+ return out
8621+
8622+ else : # outside loop
8623+ if not new_dim_base .per_spatial_frame_accumulated :
8624+ new_dim_accum = DimensionTag (
8625+ kind = new_dim_base .kind , description = "%s:accumulated" % name )
8626+ new_dim_accum .same_as = new_dim_base
8627+ new_dim_base .per_spatial_frame_accumulated = new_dim_accum
8628+ else :
8629+ new_dim_accum = new_dim_base .per_spatial_frame_accumulated
8630+ # Assume that the input has the time dim from the rec layer.
8631+ axis = input_data .get_axis_from_description (rec_time_dim )
8632+ return input_data .copy_template_replace_dim_tag (axis = axis , new_dim_tag = new_dim_accum )
8633+
8634+ # noinspection PyMethodOverriding
8635+ @classmethod
8636+ def get_rec_initial_extra_outputs (cls , network , batch_dim , rec_layer , sources , output , new_dim , ** kwargs ):
8637+ """
8638+ :param returnn.tf.network.TFNetwork network:
8639+ :param tf.Tensor batch_dim:
8640+ :param TFNetworkRecLayer.RecLayer|LayerBase rec_layer:
8641+ :param list[LayerBase] sources:
8642+ :param Data output:
8643+ :param DimensionTag new_dim:
8644+ :rtype: dict[str,tf.Tensor]
8645+ """
8646+ if network .is_inside_rec_layer ():
8647+ shape = []
8648+ for tag in output .dim_tags :
8649+ if tag .is_batch_dim ():
8650+ shape .append (batch_dim )
8651+ elif tag == new_dim :
8652+ shape .append (0 )
8653+ elif tag .dimension is not None :
8654+ shape .append (tag .dimension )
8655+ else :
8656+ assert tag .dyn_size is not None
8657+ shape .append (tf .math .reduce_max (tag .dyn_size ))
8658+ return {"state" : tf .zeros (shape , dtype = output .dtype )}
8659+ else :
8660+ return {}
8661+
8662+ @classmethod
8663+ def get_rec_initial_extra_outputs_shape_invariants (cls , network , sources , output , ** kwargs ):
8664+ """
8665+ :param returnn.tf.network.TFNetwork network:
8666+ :param list[LayerBase] sources:
8667+ :param Data output:
8668+ :rtype: dict[str, tf.TensorShape]
8669+ """
8670+ if network .is_inside_rec_layer ():
8671+ return {"state" : tf .TensorShape (output .batch_shape )}
8672+ else :
8673+ return {}
0 commit comments