|
| 1 | +from __future__ import annotations |
| 2 | +from typing import Optional, Any, Dict, List, Tuple |
| 3 | +from sisyphus import Job, Task, tk |
| 4 | +from i6_experiments.users.zeyer.external_models.huggingface import get_content_dir_from_hub_cache_dir |
| 5 | +from i6_experiments.users.zeyer.sis_tools.instanciate_delayed import instanciate_delayed_copy |
| 6 | + |
| 7 | + |
| 8 | +class ChunkSegmentationFromModelLongFormJob(Job): |
| 9 | + """ |
| 10 | + Long-form variant |
| 11 | + """ |
| 12 | + |
| 13 | + def __init__( |
| 14 | + self, |
| 15 | + *, |
| 16 | + dataset_dir: tk.Path, |
| 17 | + dataset_key: str, |
| 18 | + returnn_root: Optional[tk.Path] = None, |
| 19 | + model_config: Dict[str, Any], |
| 20 | + chunk_size_secs: float = 30.0, |
| 21 | + chunk_overlap_secs: float = 5.0, |
| 22 | + empty_exit_penalty: float = -5.0, |
| 23 | + word_start_heuristic: bool = True, |
| 24 | + dump_wav_first_n_seqs: int = 0, |
| 25 | + ): |
| 26 | + """ |
| 27 | + :param model_dir: hub cache dir of model e.g. via DownloadHuggingFaceRepoJob.out_hub_cache_dir |
| 28 | + :param dataset_dir: hub cache dir, e.g. via DownloadHuggingFaceRepoJobV2. for load_dataset |
| 29 | + :param dataset_key: e.g. "train", "test", whatever the dataset provides |
| 30 | + :param returnn_root: |
| 31 | + :param speech_prompt: prompt to use for the audio |
| 32 | + :param chunk_size_secs: chunk size in seconds |
| 33 | + :param chunk_overlap_secs: |
| 34 | + :param empty_exit_penalty: |
| 35 | + :param word_start_heuristic: |
| 36 | + :param dump_wav_first_n_seqs: for debugging |
| 37 | + """ |
| 38 | + super().__init__() |
| 39 | + |
| 40 | + self.dataset_dir = dataset_dir |
| 41 | + self.dataset_key = dataset_key |
| 42 | + self.returnn_root = returnn_root |
| 43 | + self.model_config = model_config |
| 44 | + |
| 45 | + self.chunk_size_secs = chunk_size_secs |
| 46 | + self.chunk_overlap_secs = chunk_overlap_secs |
| 47 | + self.empty_exit_penalty = empty_exit_penalty |
| 48 | + self.word_start_heuristic = word_start_heuristic |
| 49 | + self.dump_wav_first_n_seqs = dump_wav_first_n_seqs |
| 50 | + |
| 51 | + self.rqmt = {"time": 40, "cpu": 2, "gpu": 1, "mem": 125} |
| 52 | + |
| 53 | + self.out_hdf = self.output_path("out.hdf") |
| 54 | + |
| 55 | + @classmethod |
| 56 | + def hash(cls, parsed_args): |
| 57 | + del parsed_args["dump_wav_first_n_seqs"] |
| 58 | + return super().hash(parsed_args) |
| 59 | + |
| 60 | + def tasks(self): |
| 61 | + yield Task("run", rqmt=self.rqmt) |
| 62 | + |
| 63 | + def run(self): |
| 64 | + import os |
| 65 | + import sys |
| 66 | + import time |
| 67 | + import math |
| 68 | + from dataclasses import dataclass |
| 69 | + |
| 70 | + os.environ["HF_HUB_CACHE"] = "/<on_purpose_invalid_hf_hub_cache_dir>" |
| 71 | + |
| 72 | + import i6_experiments |
| 73 | + |
| 74 | + recipe_dir = os.path.dirname(os.path.dirname(i6_experiments.__file__)) |
| 75 | + sys.path.insert(0, recipe_dir) |
| 76 | + |
| 77 | + import i6_core.util as util |
| 78 | + |
| 79 | + returnn_root = util.get_returnn_root(self.returnn_root) |
| 80 | + sys.path.insert(0, returnn_root.get_path()) |
| 81 | + |
| 82 | + print("Import Torch, Numpy...") |
| 83 | + start_time = time.time() |
| 84 | + |
| 85 | + import numpy as np |
| 86 | + import torch |
| 87 | + |
| 88 | + print(f"({time.time() - start_time} secs)") |
| 89 | + |
| 90 | + from returnn.util import better_exchook |
| 91 | + from returnn.datasets.hdf import SimpleHDFWriter |
| 92 | + from i6_experiments.users.zeyer.torch.report_dev_memory_stats import report_dev_memory_stats |
| 93 | + |
| 94 | + # os.environ["DEBUG"] = "1" # for better_exchook to use debug shell on error |
| 95 | + better_exchook.install() |
| 96 | + |
| 97 | + try: |
| 98 | + # noinspection PyUnresolvedReferences |
| 99 | + import lovely_tensors |
| 100 | + |
| 101 | + lovely_tensors.monkey_patch() |
| 102 | + except ImportError: |
| 103 | + pass |
| 104 | + |
| 105 | + from .models import make_model, ForwardOutput |
| 106 | + |
| 107 | + device_str = "cuda" |
| 108 | + dev = torch.device(device_str) |
| 109 | + |
| 110 | + model_config = instanciate_delayed_copy(self.model_config) |
| 111 | + model = make_model(**model_config, device=dev) |
| 112 | + |
| 113 | + for p in model.parameters(): |
| 114 | + p.requires_grad = False |
| 115 | + |
| 116 | + report_dev_memory_stats(dev) |
| 117 | + |
| 118 | + # Write word start/end ranges per chunk, and the chunk audio sample start/end ranges. |
| 119 | + hdf_writer = SimpleHDFWriter( |
| 120 | + self.out_hdf.get_path(), dim=2, ndim=2, extra_type={"audio_chunk_start_end": (2, 2, "int32")} |
| 121 | + ) |
| 122 | + |
| 123 | + # Iter over data |
| 124 | + |
| 125 | + from datasets import load_dataset |
| 126 | + |
| 127 | + ds = load_dataset(get_content_dir_from_hub_cache_dir(self.dataset_dir)) |
| 128 | + print(f"Dataset: {ds}") |
| 129 | + print("Dataset keys:", ds.keys()) |
| 130 | + print("Using key:", self.dataset_key) |
| 131 | + print("Num seqs:", len(ds[self.dataset_key])) |
| 132 | + |
| 133 | + for seq_idx, data in enumerate(ds[self.dataset_key]): |
| 134 | + audio = data["audio"]["array"] |
| 135 | + if not isinstance(audio, np.ndarray): |
| 136 | + audio = np.array(audio) |
| 137 | + samplerate = data["audio"]["sampling_rate"] |
| 138 | + chunk_size_samples = math.ceil(self.chunk_size_secs * samplerate) |
| 139 | + words: List[str] = data["word_detail"]["utterance"] |
| 140 | + transcription = " ".join(words) |
| 141 | + print(f"* Seq {seq_idx}, {audio.shape=}, {len(audio) / samplerate} secs, {samplerate=}, {transcription!r}") |
| 142 | + assert len(transcription.split(" ")) == len(words) |
| 143 | + |
| 144 | + if seq_idx == 0: |
| 145 | + print(" data keys:", data.keys()) |
| 146 | + |
| 147 | + # First a loop to determine the corse-chunkwise segmentation: |
| 148 | + # For fixed chunks (partially overlapping), assign the most likely words. |
| 149 | + # Dyn programming, outer loop over chunks. |
| 150 | + |
| 151 | + print("* Chunkwise segmenting...") |
| 152 | + |
| 153 | + chunk_start_end: List[Tuple[int, int]] = [] # in samples |
| 154 | + cur_audio_start = 0 # in samples |
| 155 | + while True: # while not ended |
| 156 | + cur_audio_end = cur_audio_start + chunk_size_samples |
| 157 | + if cur_audio_end > len(audio): |
| 158 | + cur_audio_end = len(audio) |
| 159 | + if len(audio) - cur_audio_end <= 128 and self.chunk_overlap_secs == 0: |
| 160 | + # Skip to end. Avoids potential problems with too short chunks. |
| 161 | + cur_audio_end = len(audio) |
| 162 | + assert cur_audio_end > cur_audio_start |
| 163 | + assert cur_audio_end - cur_audio_start > 1 # require some min len |
| 164 | + chunk_start_end.append((cur_audio_start, cur_audio_end)) |
| 165 | + if cur_audio_end >= len(audio): |
| 166 | + break # only break point here |
| 167 | + cur_audio_start = cur_audio_end - math.ceil(self.chunk_overlap_secs * samplerate) |
| 168 | + assert cur_audio_start >= 0 |
| 169 | + |
| 170 | + array: List[List[_Node]] = [] # [chunk_idx][rel word_idx] |
| 171 | + |
| 172 | + # In the (S+1)*C grid (RNN-T style), but we are not filling all S+1 entries per chunk. |
| 173 | + @dataclass |
| 174 | + class _Node: |
| 175 | + chunk_idx: int # 0 <= c < C. the chunk we are in. |
| 176 | + word_idx: int # 0 <= s <= S. we have seen this many words so far, words[:s] |
| 177 | + log_prob: torch.Tensor # []. log prob of this node |
| 178 | + exit_log_prob: torch.Tensor # []. log_prob+exit (end_token_id). horizontal transition to next chunk |
| 179 | + word_log_prob: Optional[ |
| 180 | + torch.Tensor |
| 181 | + ] # []. log_prob+word (one or more labels). vertical transition to next word. (None if s==S) |
| 182 | + backpointer: Optional[_Node] # prev chunk, or prev word |
| 183 | + |
| 184 | + for cur_chunk_idx, (cur_audio_start, cur_audio_end) in enumerate(chunk_start_end): |
| 185 | + if cur_chunk_idx == 0 or not self.word_start_heuristic: |
| 186 | + prev_array_word_idx = 0 |
| 187 | + cur_word_start = 0 |
| 188 | + else: |
| 189 | + # Heuristic. Look through last chunk, look out for best exit_log_prob |
| 190 | + prev_array_word_idx = int( |
| 191 | + torch.stack([node.exit_log_prob for node in array[cur_chunk_idx - 1]]).argmax().item() |
| 192 | + ) |
| 193 | + cur_word_start = array[cur_chunk_idx - 1][prev_array_word_idx].word_idx |
| 194 | + cur_word_end = len(words) # Go to the end. Not so expensive... |
| 195 | + print( |
| 196 | + f"** Forwarding chunk {cur_chunk_idx} (out of {len(chunk_start_end)})," |
| 197 | + f" {cur_audio_start / samplerate}:{cur_audio_end / samplerate} secs," |
| 198 | + f" words {cur_word_start}:{cur_word_end} (out of {len(words)})" |
| 199 | + ) |
| 200 | + assert cur_word_end > cur_word_start # need to fix heuristic if this fails... |
| 201 | + if cur_audio_end >= len(audio): |
| 202 | + assert cur_word_end == len(words) # need to overthink approx if this fails... |
| 203 | + |
| 204 | + forward_output: ForwardOutput = model( |
| 205 | + raw_inputs=torch.tensor(audio[cur_audio_start:cur_audio_end]).unsqueeze(0), |
| 206 | + raw_inputs_sample_rate=samplerate, |
| 207 | + raw_input_seq_lens=torch.tensor([cur_audio_end - cur_audio_start]), |
| 208 | + raw_targets=[words[cur_word_start:cur_word_end]], |
| 209 | + raw_target_seq_lens=torch.tensor([cur_word_end - cur_word_start]), |
| 210 | + omitted_prev_context=torch.tensor([cur_word_start]), |
| 211 | + ) |
| 212 | + |
| 213 | + # Calculate log probs |
| 214 | + # logits = model.lm_head(last_out[:, dst_text_start - 1 :]) # [B,T-dst_text_start+1,V] |
| 215 | + # logits = logits.float() |
| 216 | + # log_probs = torch.nn.functional.log_softmax(logits, dim=-1) # [B,T-dst_text_start,V] |
| 217 | + |
| 218 | + log_probs = ... |
| 219 | + |
| 220 | + array.append([]) |
| 221 | + assert len(array) == cur_chunk_idx + 1 |
| 222 | + for w, (t0, t1) in enumerate(words_start_end + [(dst_text_end, dst_text_end + 1)]): |
| 223 | + score = model.score(forward_output=forward_output, raw_target_frame_index=w) |
| 224 | + word_idx = cur_word_start + w |
| 225 | + if word_idx < cur_word_end: |
| 226 | + word_log_prob = torch.sum( |
| 227 | + torch.stack([log_probs[0, t - dst_text_start][input_ids[0, t]] for t in range(t0, t1)]) |
| 228 | + ) # [] |
| 229 | + else: |
| 230 | + word_log_prob = None |
| 231 | + exit_log_prob = log_probs[0, t0 - dst_text_start][end_token_id] # [] |
| 232 | + if w == 0: |
| 233 | + # Add some penalty. For empty chunks, the prob is often overestimated. |
| 234 | + exit_log_prob += self.empty_exit_penalty |
| 235 | + prev_node_left, prev_node_below = None, None |
| 236 | + if w > 0: |
| 237 | + prev_node_below = array[cur_chunk_idx][-1] |
| 238 | + assert prev_node_below.word_idx == word_idx - 1 |
| 239 | + if cur_chunk_idx > 0 and prev_array_word_idx + w < len(array[cur_chunk_idx - 1]): |
| 240 | + prev_node_left = array[cur_chunk_idx - 1][prev_array_word_idx + w] |
| 241 | + assert prev_node_left.word_idx == word_idx |
| 242 | + if prev_node_below and not prev_node_left: |
| 243 | + prev_node = prev_node_below |
| 244 | + log_prob = prev_node_below.word_log_prob |
| 245 | + elif not prev_node_below and prev_node_left: |
| 246 | + prev_node = prev_node_left |
| 247 | + log_prob = prev_node_left.exit_log_prob |
| 248 | + elif prev_node_below and prev_node_left: |
| 249 | + if prev_node_below.word_log_prob >= prev_node_left.exit_log_prob: |
| 250 | + prev_node = prev_node_below |
| 251 | + log_prob = prev_node_below.word_log_prob |
| 252 | + else: |
| 253 | + prev_node = prev_node_left |
| 254 | + log_prob = prev_node_left.exit_log_prob |
| 255 | + else: |
| 256 | + assert cur_chunk_idx == word_idx == 0 |
| 257 | + prev_node = None |
| 258 | + log_prob = torch.zeros(()) |
| 259 | + array[cur_chunk_idx].append( |
| 260 | + _Node( |
| 261 | + chunk_idx=cur_chunk_idx, |
| 262 | + word_idx=word_idx, |
| 263 | + log_prob=log_prob, |
| 264 | + backpointer=prev_node, |
| 265 | + word_log_prob=(log_prob + word_log_prob) if word_idx < cur_word_end else None, |
| 266 | + exit_log_prob=log_prob + exit_log_prob, |
| 267 | + ) |
| 268 | + ) |
| 269 | + assert ( |
| 270 | + len(array[cur_chunk_idx]) == cur_word_end - cur_word_start + 1 |
| 271 | + and array[cur_chunk_idx][0].word_idx == cur_word_start |
| 272 | + and array[cur_chunk_idx][-1].word_idx == cur_word_end |
| 273 | + ) |
| 274 | + |
| 275 | + del forward_output, log_probs # not needed anymore now |
| 276 | + |
| 277 | + # Backtrack |
| 278 | + nodes_alignment: List[_Node] = [] |
| 279 | + node = array[-1][-1] |
| 280 | + assert node.word_idx == len(words) # has seen all words |
| 281 | + while node: |
| 282 | + nodes_alignment.append(node) |
| 283 | + node = node.backpointer |
| 284 | + nodes_alignment.reverse() |
| 285 | + |
| 286 | + # Collect words per chunk |
| 287 | + words_per_chunks: List[List[int]] = [[] for _ in range(len(chunk_start_end))] |
| 288 | + words_covered = 0 |
| 289 | + for node in nodes_alignment[1:]: |
| 290 | + if node.backpointer.chunk_idx == node.chunk_idx: |
| 291 | + assert node.word_idx == node.backpointer.word_idx + 1 |
| 292 | + words_per_chunks[node.chunk_idx].append(node.word_idx - 1) |
| 293 | + assert words_covered == node.word_idx - 1 |
| 294 | + words_covered += 1 |
| 295 | + else: |
| 296 | + assert node.chunk_idx == node.backpointer.chunk_idx + 1 |
| 297 | + assert node.word_idx == node.backpointer.word_idx |
| 298 | + assert words_covered == len(words) |
| 299 | + words_indices_start_end = [(ws[0], ws[-1] + 1) if ws else (-1, -1) for ws in words_per_chunks] |
| 300 | + print(" Words per chunks:", words_indices_start_end) |
| 301 | + |
| 302 | + assert len(words_indices_start_end) == len(chunk_start_end) |
| 303 | + hdf_writer.insert_batch( |
| 304 | + np.array(words_indices_start_end)[None], |
| 305 | + seq_len=[len(chunk_start_end)], |
| 306 | + seq_tag=[f"seq-{seq_idx}"], |
| 307 | + extra={"audio_chunk_start_end": np.array(chunk_start_end)[None]}, |
| 308 | + ) |
| 309 | + |
| 310 | + if seq_idx < self.dump_wav_first_n_seqs: |
| 311 | + for cur_chunk_idx, ((cur_audio_start, cur_audio_end), ws) in enumerate( |
| 312 | + zip(chunk_start_end, words_per_chunks) |
| 313 | + ): |
| 314 | + write_wave_file( |
| 315 | + f"seq{seq_idx}-chunk{cur_chunk_idx}.wav", |
| 316 | + samples=audio[cur_audio_start:cur_audio_end], |
| 317 | + sr=samplerate, |
| 318 | + ) |
| 319 | + with open(f"seq{seq_idx}-chunk{cur_chunk_idx}.txt", "w") as f: |
| 320 | + f.write(" ".join(words[w] for w in ws)) |
| 321 | + |
| 322 | + hdf_writer.close() |
| 323 | + |
| 324 | + # better_exchook.debug_shell(user_ns=locals(), user_global_ns=locals()) |
0 commit comments