-
Notifications
You must be signed in to change notification settings - Fork 1
/
validation.py
151 lines (127 loc) · 6.92 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from models.model_utils import multipathway_input, AverageMeter, accuracy
import misc.distributed_helper as du_helper
from evaluate import get_distance_matrix, get_closest_data_mat, get_topk_acc
#
# def topk_retrieval_validation(train_loader, test_loader, model, train_data, val_data, cfg):
# top1_acc, top5_acc = k_nearest_embeddings(model, train_loader, test_loader, train_data, val_data, cfg, plot=False)
#
#
def validate(val_loader, tripletnet, criterion, epoch, cfg, cuda, device, is_master_proc=True):
metric = cfg.VAL.METRIC
losses = AverageMeter()
accs = AverageMeter()
embeddings = []
labels = []
top1_accs = AverageMeter()
top5_accs = AverageMeter()
world_size = du_helper.get_world_size()
tripletnet.eval()
with torch.no_grad():
for batch_idx, (inputs, targets, idx) in enumerate(val_loader):
if cfg.DATASET.MODALITY == True:
(anchors, positives, negatives) = inputs
(anchor_target, positive_target, negative_target) = targets
anchor_v1, anchor_v2 = anchors
positive_v1, positive_v2 = positives
negative_v1, negative_v2 = negatives
batch_size = torch.tensor(anchor_v1.size(0)).to(device)
if cuda:
anchor_v1, positive_v1, negative_v1 = anchor_v1.to(device), positive_v1.to(device), negative_v1.to(device)
anchor_v2, positive_v2, negative_v2 = anchor_v2.to(device), positive_v2.to(device), negative_v2.to(device)
anchor = (anchor_v1, anchor_v2)
positive = (positive_v1, positive_v2)
negative = (negative_v1, negative_v2)
else:
(anchor, positive, negative) = inputs
(anchor_target, positive_target, negative_target) = targets
batch_size = torch.tensor(anchor.size(0)).to(device)
if cfg.MODEL.ARCH == 'slowfast':
anchor = multipathway_input(anchor, cfg)
positive = multipathway_input(positive, cfg)
negative = multipathway_input(negative, cfg)
if cuda:
for i in range(len(anchor)):
anchor[i], positive[i], negative[i] = anchor[i].to(device), positive[i].to(device), negative[i].to(device)
else:
if cuda:
anchor, positive, negative = anchor.to(device), positive.to(device), negative.to(device)
dista, distb, embedded_x, embedded_y, embedded_z = tripletnet(anchor, positive, negative)
embedded_x = embedded_x.flatten(1)
embedded_y = embedded_y.flatten(1)
embedded_z = embedded_z.flatten(1)
target = torch.FloatTensor(dista.size()).fill_(-1)
if cuda:
target = target.to(device)
anchor_target = anchor_target.to(device)
# ==> Triplet loss
loss = criterion(dista, distb, target)
acc = accuracy(dista.detach(), distb.detach()) # measure accuracy
if metric == 'global':
if cfg.NUM_GPUS > 1:
embedded_x, anchor_target = du_helper.all_gather([embedded_x, anchor_target])
embeddings.append(embedded_x.detach().cpu())
labels.append(anchor_target.detach().cpu())
elif metric == 'local_batch':
embeddings = torch.cat((embedded_x.detach().cpu(), embedded_y.detach().cpu()), dim=0)
labels = torch.cat((anchor_target.detach().cpu(), positive_target.detach().cpu()), dim=0)
distance_matrix = get_distance_matrix(embeddings, dist_metric=cfg.LOSS.DIST_METRIC)
topk_acc = get_topk_acc(distance_matrix, labels.tolist())
top1_acc = torch.tensor(topk_acc[0]).to(device)
top5_acc = torch.tensor(topk_acc[1]).to(device)
else:
print('Metric type:{} is not implemented'.format(metric))
if cfg.NUM_GPUS > 1:
[loss, acc] = du_helper.all_reduce([loss, acc], avg=True)
[batch_size_world] = du_helper.all_reduce([batch_size], avg=False)
if metric == 'local_batch':
[top1_acc, top5_acc] = du_helper.all_reduce([top1_acc, top5_acc], avg=True)
else:
batch_size_world = batch_size
batch_size_world = batch_size_world.item()
# Update running loss and accuracy
accs.update(acc.item(), batch_size_world)
losses.update(loss.item(), batch_size_world)
if metric == 'local_batch':
top1_accs.update(top1_acc)
top5_accs.update(top5_acc)
if ((batch_idx + 1) * world_size) % cfg.VAL.LOG_INTERVAL == 0:
if (is_master_proc):
msg = 'Val Epoch: {} [{}/{} | {:.1f}%]\t'\
'Loss: {:.4f} ({:.4f}) \t'\
'Triplet Acc: {:.2f}% ({:.2f}%)'.format(
epoch, losses.count,
len(val_loader.dataset), (losses.count*100./len(val_loader.dataset)),
losses.val, losses.avg,
accs.val*100., accs.avg*100.)
if metric == 'local_batch':
msg += '\t'
msg += 'Top1 Acc: {:.2f}% ({:.2f}%) \t'\
'Top5 Acc: {:.2f}% ({:.2f}%)'.format(
top1_accs.val*100., top1_accs.avg*100.,
top5_accs.val*100., top5_accs.avg*100.)
print(msg)
if metric == 'global':
# Top 1/5 Acc
if (is_master_proc):
embeddings = torch.cat(embeddings, dim=0)
labels = torch.cat(labels, dim=0).tolist()
distance_matrix = get_distance_matrix(embeddings, dist_metric=cfg.LOSS.DIST_METRIC)
topk_acc = get_topk_acc(distance_matrix, labels)
top1_accs.update(topk_acc[0])
top5_accs.update(topk_acc[1])
if (is_master_proc):
# Log
msg = '\nTest set: Average loss: {:.4f}, Triplet Accuracy: {:.2f}%'.format(losses.avg, accs.avg*100.)
to_write = 'epoch:{} {:.4f} {:.2f}'.format(epoch, losses.avg, accs.avg*100.)
if metric == 'global' or metric == 'local_batch':
msg += ', '
msg += 'Top1 Acc: {:.2f}% ({:.2f}%) \t'\
'Top5 Acc: {:.2f}% ({:.2f}%)'.format(100.*top1_accs.val, 100.*top1_accs.avg,
100.*top5_accs.val, 100.*top5_accs.avg)
to_write += ' {:.2f} {:.2f}'.format(100.*top1_accs.avg, 100.*top5_accs.avg)
to_write += '\n'
print(msg)
with open('{}/tnet_checkpoints/val_loss_and_acc.txt'.format(cfg.OUTPUT_PATH), "a") as val_file:
val_file.write(to_write)
return accs.avg