Skip to content

Streaming ASR and TTS based on FastAPI+ sherpa-onnx

Notifications You must be signed in to change notification settings

ruzhila/voiceapi

Repository files navigation

voiceapi - A simple and clean voice transcription/synthesis API with sherpa-onnx

Thanks to k2-fsa/sherpa-onnx, we can easily build a voice API with Python.

Supported models

Model Language Type Description
zipformer-bilingual-zh-en-2023-02-20 Chinese + English Online ASR Streaming Zipformer, Bilingual
sense-voice-zh-en-ja-ko-yue-2024-07-17 Chinese + English Offline ASR SenseVoice, Bilingual
paraformer-trilingual-zh-cantonese-en Chinese + Cantonese + English Offline ASR Paraformer, Trilingual
paraformer-en-2024-03-09 English Offline ASR Paraformer, English
vits-zh-hf-theresa Chinese TTS VITS, Chinese, 804 speakers
melo-tts-zh_en Chinese + English TTS Melo, Chinese + English, 1 speakers

Run the app locally

Python 3.10+ is required

python3 -m venv venv
. venv/bin/activate

pip install -r requirements.txt
python app.py

Visit http://localhost:8000/ to see the demo page

Build cuda image (for Chinese users)

docker build -t voiceapi:cuda_dev -f Dockerfile.cuda.cn .

Streaming API (via WebSocket)

/asr

Send PCM 16bit audio data to the server, and the server will return the transcription result.

  • samplerate can be set in the query string, default is 16000.

The server will return the transcription result in JSON format, with the following fields:

  • text: the transcription result
  • finished: whether the segment is finished
  • idx: the index of the segment
    const ws = new WebSocket('ws://localhost:8000/asr?samplerate=16000');
    ws.onopen = () => {
        console.log('connected');
        ws.send('{"sid": 0}');
    };
    ws.onmessage = (e) => {
        const data = JSON.parse(e.data);
        const { text, finished, idx } = data;
        // do something with text
        // finished is true when the segment is finished
    };
    // send audio data
    // PCM 16bit, with samplerate
    ws.send(int16Array.buffer);

/tts

Send text to the server, and the server will return the synthesized audio data.

  • samplerate can be set in the query string, default is 16000.
  • sid is the Speaker ID, default is 0.
  • speed is the speed of the synthesized audio, default is 1.0.
  • chunk_size is the size of the audio chunk, default is 1024.

The server will return the synthesized audio data in binary format.

  • The audio data is in PCM 16bit format, with the binary data in the response body.
  • The server will return the synthesized result with json format, with the following fields:
    • elapsed: the elapsed time
    • progress: the progress of the synthesis
    • duration: the duration of the synthesis
    • size: the size of the synthesized audio data
    const ws = new WebSocket('ws://localhost:8000/tts?samplerate=16000');
    ws.onopen = () => {
        console.log('connected');
        ws.send('Your text here');
    };
    ws.onmessage = (e) => {
        if (e.data instanceof Blob) {
            // Chunked audio data
            e.data.arrayBuffer().then((arrayBuffer) => {
                const int16Array = new Int16Array(arrayBuffer);
                let float32Array = new Float32Array(int16Array.length);
                for (let i = 0; i < int16Array.length; i++) {
                    float32Array[i] = int16Array[i] / 32768.;
                }
                playNode.port.postMessage({ message: 'audioData', audioData: float32Array });
            });
        } else {
            // The server will return the synthesized result
            const {elapsed, progress, duration, size } = JSON.parse(e.data);
            this.elapsedTime = elapsed;
        }
    };

No Streaming API

/tts

Send text to the server, and the server will return the synthesized audio data.

  • text is the text to be synthesized.
  • samplerate can be set in the query string, default is 16000.
  • sid is the Speaker ID, default is 0.
  • speed is the speed of the synthesized audio, default is 1.0.
curl -X POST "http://localhost:8000/tts" \
     -H "Content-Type: application/json" \
     -d '{
           "text": "Hello, world!",
           "sid": 0,
           "samplerate": 16000
         }' -o helloworkd.wav

Download models

All models are stored in the models directory Only download the models you need. default models are:

  • asr models: sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20(Bilingual, Chinese + English). Streaming
  • tts models: vits-zh-hf-theresa (Chinese + English)

vits-zh-hf-theresa

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-zh-hf-theresa.tar.bz2

vits-melo-tts-zh_en

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-melo-tts-zh_en.tar.bz2

sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20.tar.bz2

silero_vad.onnx

curl -SL -O https://github.com/snakers4/silero-vad/raw/master/src/silero_vad/data/silero_vad.onnx

sherpa-onnx-paraformer-trilingual-zh-cantonese-en

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-trilingual-zh-cantonese-en.tar.bz2

whisper

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2

sensevoice

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2

sherpa-onnx-streaming-paraformer-bilingual-zh-en

curl -SL -O  https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2

sherpa-onnx-paraformer-trilingual-zh-cantonese-en

curl -SL -O  https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-trilingual-zh-cantonese-en.tar.bz2

sherpa-onnx-paraformer-en

curl -SL -O  https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-en-2024-03-09.tar.bz2

About

Streaming ASR and TTS based on FastAPI+ sherpa-onnx

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published