Skip to content

A distributed vector database that learns. Store embeddings, query with Cypher, scale horizontally with Raft consensus, and let the index improve itself through Graph Neural Networks.

License

Notifications You must be signed in to change notification settings

ruvnet/ruvector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

RuVector

Crates.io npm npm Downloads npm Downloads HuggingFace ruv.io MIT License

The vector database that gets smarter the more you use it.

npx ruvector

Most vector databases are staticβ€”they store embeddings and search them. That's it. RuVector is different: it learns from every query, runs LLMs locally, scales horizontally, and costs nothing to operate.

Pinecone/Weaviate RuVector
Search improves over time ❌ βœ… GNN layers learn from usage
Run LLMs locally ❌ βœ… ruvllm + RuvLTRA models ($0)
Graph queries (Cypher) ❌ βœ… MATCH (a)-[:SIMILAR]->(b)
Self-learning AI hooks ❌ βœ… Q-learning, HNSW memory
Real-time graph updates ❌ Rebuild index βœ… Dynamic min-cut (no rebuild)
Horizontal scaling πŸ’° Paid βœ… Raft consensus, free
Works offline ❌ βœ… Browser, edge, embedded

One package. Everything included: vector search, graph queries, GNN learning, distributed clustering, local LLMs, 39 attention mechanisms, and WASM support.

πŸ“‹ See Full Capabilities (30+ features)

Core Vector Database

# Capability What It Does
1 Store vectors Embeddings from OpenAI, Cohere, local ONNX with HNSW indexing
2 Query with Cypher Graph queries like Neo4j (MATCH (a)-[:SIMILAR]->(b))
3 The index learns GNN layers make search results improve over time
4 Hyperbolic HNSW Hierarchical data in hyperbolic space for better tree structures
5 Compress automatically 2-32x memory reduction with adaptive tiered compression

Distributed Systems

# Capability What It Does
6 Raft consensus Leader election, log replication, fault-tolerant coordination
7 Multi-master replication Vector clocks, conflict resolution, geo-distributed sync
8 Burst scaling 10-50x capacity scaling for traffic spikes
9 Auto-sharding Automatic data partitioning across nodes

AI & Machine Learning

# Capability What It Does
10 Run LLMs locally ruvllm with GGUF, Metal/CUDA/ANE acceleration
11 RuvLTRA models Pre-trained GGUF for routing & embeddings (<10ms) β†’ HuggingFace
12 SONA learning Self-Optimizing Neural Architecture with LoRA, EWC++
13 39 attention mechanisms Flash, linear, graph, hyperbolic, mincut-gated (50% compute)
14 Spiking neural networks Event-driven neuromorphic computing
15 Mincut-gated transformer Dynamic attention via graph min-cut optimization
16 Route AI requests Semantic routing + FastGRNN for LLM optimization

Specialized Processing

# Capability What It Does
17 SciPix OCR LaTeX/MathML extraction from scientific documents
18 DAG workflows Self-learning directed acyclic graph execution
19 Cognitum Gate Cognitive AI gateway with TileZero acceleration
20 FPGA transformer Hardware-accelerated transformer inference
21 Quantum coherence ruQu for quantum error correction via dynamic min-cut

Platform & Integration

# Capability What It Does
22 Run anywhere Node.js, browser (WASM), edge (rvLite), HTTP server, Rust
23 Drop into Postgres pgvector-compatible extension with SIMD acceleration
24 MCP integration Model Context Protocol server for AI assistant tools
25 Cloud deployment One-click deploy to Cloud Run, Kubernetes

Self-Learning & Adaptation

# Capability What It Does
26 Self-learning hooks Q-learning, neural patterns, HNSW memory
27 ReasoningBank Trajectory learning with verdict judgment
28 Economy system Tokenomics, CRDT-based distributed state
29 Nervous system Event-driven reactive architecture
30 Agentic synthesis Multi-agent workflow composition

Think of it as: Pinecone + Neo4j + PyTorch + llama.cpp + postgres + etcd β€” in one Rust package.


Ecosystem: AI Agent Orchestration

RuVector powers two major AI orchestration platforms:

Platform Purpose Install
Claude-Flow Enterprise multi-agent orchestration for Claude Code npx @claude-flow/cli@latest
Agentic-Flow Standalone AI agent framework (any LLM provider) npx agentic-flow@latest
Claude-Flow v3 β€” Turn Claude Code into a collaborative AI team

54+ specialized agents working together on complex software engineering tasks:

# Install
npx @claude-flow/cli@latest init --wizard

# Spawn a swarm
npx @claude-flow/cli@latest swarm init --topology hierarchical --max-agents 8

Key Features:

  • SONA Learning: Sub-50ms adaptive routing, learns optimal patterns over time
  • Queen-led Swarms: Byzantine fault-tolerant consensus with 5 protocols (Raft, Gossip, CRDT)
  • HNSW Memory: 150x-12,500x faster pattern retrieval via RuVector
  • 175+ MCP Tools: Native Model Context Protocol integration
  • Cost Optimization: 3-tier routing extends Claude Code quota by 2.5x
  • Security: AIDefence threat detection (<10ms), prompt injection blocking
Agentic-Flow v2 β€” Production AI agents for any cloud

66 self-learning agents with Claude Agent SDK, deployable to any cloud:

# Install
npx agentic-flow@latest

# Or with npm
npm install agentic-flow

Key Features:

  • SONA Architecture: <1ms adaptive learning, +55% quality improvement
  • Flash Attention: 2.49x JS speedup, 7.47x with NAPI bindings
  • 213 MCP Tools: Swarm management, memory, GitHub integration
  • Agent Booster: 352x faster code editing for simple transforms
  • Multi-Provider: Claude, GPT, Gemini, Cohere, local models with failover
  • Graph Reasoning: GNN query refinement with +12.4% recall improvement

How the GNN Works

Traditional vector search:

Query β†’ HNSW Index β†’ Top K Results

RuVector with GNN:

Query β†’ HNSW Index β†’ GNN Layer β†’ Enhanced Results
                ↑                      β”‚
                └──── learns from β”€β”€β”€β”€β”€β”˜

The GNN layer:

  1. Takes your query and its nearest neighbors
  2. Applies multi-head attention to weigh which neighbors matter
  3. Updates representations based on graph structure
  4. Returns better-ranked results

Over time, frequently-accessed paths get reinforced, making common queries faster and more accurate.

Quick Start

One-Line Install

# Interactive installer - lists all packages
npx ruvector install

# Or install directly
npm install ruvector
npx ruvector

# Self-learning hooks for Claude Code
npx @ruvector/cli hooks init
npx @ruvector/cli hooks install

# LLM runtime (SONA learning, HNSW memory)
npm install @ruvector/ruvllm

Node.js / Browser

# Install
npm install ruvector

# Or try instantly
npx ruvector
πŸ“Š Comparison with Other Vector Databases
Feature RuVector Pinecone Qdrant Milvus ChromaDB
Latency (p50) 61Β΅s ~2ms ~1ms ~5ms ~50ms
Memory (1M vec) 200MB* 2GB 1.5GB 1GB 3GB
Graph Queries βœ… Cypher ❌ ❌ ❌ ❌
SPARQL/RDF βœ… W3C 1.1 ❌ ❌ ❌ ❌
Hyperedges βœ… ❌ ❌ ❌ ❌
Dynamic Min-Cut βœ… n^0.12 ❌ ❌ ❌ ❌
Self-Learning (GNN) βœ… ❌ ❌ ❌ ❌
Runtime Adaptation (SONA) βœ… LoRA+EWC++ ❌ ❌ ❌ ❌
AI Agent Routing βœ… Tiny Dancer ❌ ❌ ❌ ❌
Attention Mechanisms βœ… 40 types ❌ ❌ ❌ ❌
Coherence Gate βœ… Prime-Radiant ❌ ❌ ❌ ❌
Hyperbolic Embeddings βœ… PoincarΓ©+Lorentz ❌ ❌ ❌ ❌
Local Embeddings βœ… 8+ models ❌ ❌ ❌ ❌
PostgreSQL Extension βœ… 77+ functions ❌ ❌ ❌ ❌
SIMD Optimization βœ… AVX-512/NEON Partial βœ… βœ… ❌
Metadata Filtering βœ… βœ… βœ… βœ… βœ…
Sparse Vectors βœ… BM25/TF-IDF βœ… βœ… βœ… ❌
Raft Consensus βœ… ❌ βœ… ❌ ❌
Multi-Master Replication βœ… ❌ ❌ βœ… ❌
Auto-Sharding βœ… βœ… βœ… βœ… ❌
Auto-Compression βœ… 2-32x ❌ ❌ βœ… ❌
Snapshots/Backups βœ… βœ… βœ… βœ… ❌
Browser/WASM βœ… WebGPU ❌ ❌ ❌ ❌
Standalone Edge DB βœ… rvLite ❌ ❌ ❌ ❌
LLM Runtime βœ… ruvllm ❌ ❌ ❌ ❌
Pre-trained Models βœ… RuvLTRA (HF) ❌ ❌ ❌ ❌
MCP Server βœ… mcp-gate ❌ ❌ ❌ ❌
Self-Learning Hooks βœ… Q-learning+Neural+HNSW ❌ ❌ ❌ ❌
Quantum Coherence βœ… ruQu ❌ ❌ ❌ ❌
MinCut-Gated Attention βœ… 50% compute ❌ ❌ ❌ ❌
FPGA Acceleration βœ… ❌ ❌ ❌ ❌
Local ONNX Embeddings βœ… 8+ models ❌ ❌ ❌ ❌
Differentiable βœ… ❌ ❌ ❌ ❌
Multi-Tenancy βœ… Collections βœ… βœ… βœ… βœ…
DAG Workflows βœ… Self-learning ❌ ❌ ❌ ❌
ReasoningBank βœ… Trajectory learning ❌ ❌ ❌ ❌
Economy System βœ… CRDT tokenomics ❌ ❌ ❌ ❌
Nervous System βœ… Event-driven ❌ ❌ ❌ ❌
Cognitum Gate βœ… TileZero ❌ ❌ ❌ ❌
SciPix OCR βœ… LaTeX/MathML ❌ ❌ ❌ ❌
Spiking Neural Nets βœ… Neuromorphic ❌ ❌ ❌ ❌
Node.js Native βœ… napi-rs ❌ ❌ ❌ βœ…
Burst Scaling βœ… 10-50x βœ… ❌ βœ… ❌
Streaming API βœ… βœ… βœ… βœ… ❌
Open Source βœ… MIT ❌ βœ… βœ… βœ…

*With PQ8 compression. Benchmarks on Apple M2 / Intel i7.

⚑ Core Features & Capabilities

Core Capabilities

Feature What It Does Why It Matters
Vector Search HNSW index, <0.5ms latency, SIMD acceleration Fast enough for real-time apps
Cypher Queries MATCH, WHERE, CREATE, RETURN Familiar Neo4j syntax
GNN Layers Neural network on index topology Search improves with usage
Hyperedges Connect 3+ nodes at once Model complex relationships
Metadata Filtering Filter vectors by properties Combine semantic + structured search
Collections Namespace isolation, multi-tenancy Organize vectors by project/user
Hyperbolic HNSW PoincarΓ© ball indexing for hierarchies Better tree/taxonomy embeddings
Sparse Vectors BM25/TF-IDF hybrid search Combine keyword + semantic

LLM Runtime

Feature What It Does Why It Matters
ruvllm Local LLM inference with GGUF models Run AI without cloud APIs
Metal/CUDA/ANE Hardware acceleration on Mac/NVIDIA/Apple 10-50x faster inference
ruvllm-wasm Browser LLM with WebGPU acceleration Client-side AI, zero latency
RuvLTRA Models Pre-trained GGUF for routing & embeddings <10ms inference β†’ HuggingFace
Streaming Tokens Real-time token generation Responsive chat UX
Quantization Q4, Q5, Q8 model support Run 7B models in 4GB RAM
npm install @ruvector/ruvllm        # Node.js
cargo add ruvllm                    # Rust

Platform & Edge

Feature What It Does Why It Matters
rvLite Standalone 2MB edge database IoT, mobile, embedded
PostgreSQL Extension 77+ SQL functions, pgvector replacement Drop-in upgrade for existing DBs
MCP Server Model Context Protocol integration AI assistant tool calling
WASM/Browser Full client-side vector search Offline-first apps
Node.js Bindings Native napi-rs, zero-copy No serialization overhead
HTTP/gRPC Server REST API with streaming Easy microservice integration
docker pull ruvnet/ruvector-postgres    # PostgreSQL
npm install rvlite                       # Edge DB
npx ruvector mcp start                   # MCP Server

Distributed Systems

Feature What It Does Why It Matters
Raft Consensus Leader election, log replication Strong consistency for metadata
Auto-Sharding Consistent hashing, shard migration Scale to billions of vectors
Multi-Master Replication Write to any node, conflict resolution High availability, no SPOF
Snapshots Point-in-time backups, incremental Disaster recovery
Cluster Metrics Prometheus-compatible monitoring Observability at scale
Burst Scaling 10-50x capacity for traffic spikes Handle viral moments
cargo add ruvector-raft ruvector-cluster ruvector-replication

AI & ML

Feature What It Does Why It Matters
Tensor Compression f32β†’f16β†’PQ8β†’PQ4β†’Binary 2-32x memory reduction
Differentiable Search Soft attention k-NN End-to-end trainable
Semantic Router Route queries to optimal endpoints Multi-model AI orchestration
Hybrid Routing Keyword-first + embedding fallback 90% accuracy for agent routing
Tiny Dancer FastGRNN neural inference Optimize LLM inference costs
Adaptive Routing Learn optimal routing strategies Minimize latency, maximize accuracy
SONA Two-tier LoRA + EWC++ + ReasoningBank Runtime learning without retraining
Local Embeddings 8+ ONNX models built-in No external API needed

Specialized Processing

Feature What It Does Why It Matters
SciPix OCR LaTeX/MathML from scientific docs Index research papers
DAG Workflows Self-learning directed acyclic graphs Complex pipeline orchestration
Cognitum Gate Cognitive AI gateway + TileZero Unified AI model routing
FPGA Transformer Hardware-accelerated inference Ultra-low latency serving
ruQu Quantum Quantum error correction via min-cut Future-proof algorithms
Mincut-Gated Transformer Dynamic attention via graph optimization 50% compute reduction
Sparse Inference Efficient sparse matrix operations 10x faster for sparse data

Self-Learning & Adaptation

Feature What It Does Why It Matters
Self-Learning Hooks Q-learning + neural patterns + HNSW System improves automatically
ReasoningBank Trajectory learning with verdict judgment Learn from successes/failures
Economy System Tokenomics, CRDT-based distributed state Incentivize agent behavior
Nervous System Event-driven reactive architecture Real-time adaptation
Agentic Synthesis Multi-agent workflow composition Emergent problem solving
EWC++ Elastic weight consolidation Prevent catastrophic forgetting
npx @ruvector/cli hooks init      # Install self-learning hooks
npx @ruvector/cli hooks install   # Configure for Claude Code

Attention Mechanisms (@ruvector/attention)

Feature What It Does Why It Matters
40 Mechanisms Dot-product, multi-head, flash, linear, sparse, cross-attention, CGT sheaf Cover all transformer and GNN use cases
Graph Attention RoPE, edge-featured, local-global, neighborhood Purpose-built for graph neural networks
Hyperbolic Attention PoincarΓ© ball operations, curved-space math Better embeddings for hierarchical data
SIMD Optimized Native Rust with AVX2/NEON acceleration 2-10x faster than pure JS
Streaming & Caching Chunk-based processing, KV-cache Constant memory, 10x faster inference

Documentation: Attention Module Docs

Core Attention Mechanisms

Standard attention layers for sequence modeling and transformers.

Mechanism Complexity Memory Best For
DotProductAttention O(nΒ²) O(nΒ²) Basic attention for small-medium sequences
MultiHeadAttention O(nΒ²Β·h) O(nΒ²Β·h) BERT, GPT-style transformers
FlashAttention O(nΒ²) O(n) Long sequences with limited GPU memory
LinearAttention O(nΒ·d) O(nΒ·d) 8K+ token sequences, real-time streaming
HyperbolicAttention O(nΒ²) O(nΒ²) Tree-like data: taxonomies, org charts
MoEAttention O(nΒ·k) O(nΒ·k) Large models with sparse expert routing

Graph Attention Mechanisms

Attention layers designed for graph-structured data and GNNs.

Mechanism Complexity Best For
GraphRoPeAttention O(nΒ²) Position-aware graph transformers
EdgeFeaturedAttention O(nΒ²Β·e) Molecules, knowledge graphs with edge data
DualSpaceAttention O(nΒ²) Hybrid flat + hierarchical embeddings
LocalGlobalAttention O(nΒ·k + n) 100K+ node graphs, scalable GNNs

Specialized Mechanisms

Task-specific attention variants for efficiency and multi-modal learning.

Mechanism Type Best For
SparseAttention Efficiency Long docs, low-memory inference
CrossAttention Multi-modal Image-text, encoder-decoder models
NeighborhoodAttention Graph Local message passing in GNNs
HierarchicalAttention Structure Multi-level docs (section β†’ paragraph)
CGTSheafAttention Coherence Consistency-gated graph transformers

Hyperbolic Math Functions

Operations for PoincarΓ© ball embeddingsβ€”curved space that naturally represents hierarchies.

Function Description Use Case
expMap(v, c) Map to hyperbolic space Initialize embeddings
logMap(p, c) Map to flat space Compute gradients
mobiusAddition(x, y, c) Add vectors in curved space Aggregate features
poincareDistance(x, y, c) Measure hyperbolic distance Compute similarity
projectToPoincareBall(p, c) Ensure valid coordinates Prevent numerical errors

Async & Batch Operations

Utilities for high-throughput inference and training optimization.

Operation Description Performance
asyncBatchCompute() Process batches in parallel 3-5x faster
streamingAttention() Process in chunks Fixed memory usage
HardNegativeMiner Find hard training examples Better contrastive learning
AttentionCache Cache key-value pairs 10x faster inference
# Install attention module
npm install @ruvector/attention

# CLI commands
npx ruvector attention list                    # List all 39 mechanisms
npx ruvector attention info flash              # Details on FlashAttention
npx ruvector attention benchmark               # Performance comparison
npx ruvector attention compute -t dot -d 128   # Run attention computation
npx ruvector attention hyperbolic -a distance -v "[0.1,0.2]" -b "[0.3,0.4]"

Coherence Gate (prime-radiant)

Feature What It Does Why It Matters
Sheaf Laplacian Measures consistency via E(S) = Ξ£ wβ‚‘ Β· ‖ρᡀ(xα΅€) - ρα΅₯(xα΅₯)β€–Β² Mathematical proof of coherence
Compute Ladder Reflex (<1ms) β†’ Retrieval (~10ms) β†’ Heavy (~100ms) β†’ Human Route by confidence level
LLM Hallucination Gate Block incoherent responses with witnesses Refuse generation when math says contradiction
GPU/SIMD Acceleration wgpu + AVX-512/NEON + vec4 WGSL kernels 4-16x speedup on coherence checks
Governance Audit Blake3 hash chain, cryptographic witnesses Every decision is provable

Coherence vs Confidence

Traditional AI Prime-Radiant
"I'm 85% confident" "Zero contradictions found"
Can be confidently wrong Knows when it doesn't know
Guesses about the future Proves consistency right now
Trust the model Trust the math

Compute Ladder Routing

Energy Lane Latency Action
< 0.1 Reflex < 1ms Immediate approval
0.1-0.4 Retrieval ~10ms Fetch more evidence
0.4-0.7 Heavy ~100ms Deep analysis
> 0.7 Human async Escalate to review
# Install coherence engine
cargo add prime-radiant

# With GPU acceleration
cargo add prime-radiant --features gpu,simd
πŸš€ Deployment Options
Feature What It Does Why It Matters
HTTP/gRPC Server REST API, streaming support Easy integration
WASM/Browser Full client-side support Run AI search offline
Node.js Bindings Native napi-rs bindings No serialization overhead
FFI Bindings C-compatible interface Use from Python, Go, etc.
CLI Tools Benchmarking, testing, management DevOps-friendly
πŸ“ˆ Performance Benchmarks

Measured results from /bench_results/:

Configuration QPS p50 Latency p99 Latency Recall
ruvector (optimized) 1,216 0.78ms 0.78ms 100%
Multi-threaded (16) 3,597 2.86ms 8.47ms 100%
ef_search=50 674 1.35ms 1.35ms 100%
Python baseline 77 11.88ms 11.88ms 100%
Brute force 12 77.76ms 77.76ms 100%

Dataset: 384D, 10K-50K vectors. See full results in latency_benchmark.md.

Operation Dimensions Time Throughput
HNSW Search (k=10) 384 61Β΅s 16,400 QPS
HNSW Search (k=100) 384 164Β΅s 6,100 QPS
Cosine Distance 1536 143ns 7M ops/sec
Dot Product 384 33ns 30M ops/sec
Batch Distance (1000) 384 237Β΅s 4.2M/sec

Global Cloud Performance (500M Streams)

Production-validated metrics at hyperscale:

Metric Value Details
Concurrent Streams 500M baseline Burst capacity to 25B (50x)
Global Latency (p50) <10ms Multi-region + CDN edge caching
Global Latency (p99) <50ms Cross-continental with failover
Availability SLA 99.99% 15 regions, automatic failover
Cost per Stream/Month $0.0035 60% optimized ($1.74M total at 500M)
Regions 15 global Americas, EMEA, APAC coverage
Throughput per Region 100K+ QPS Adaptive batching enabled
Memory Efficiency 2-32x compression Tiered hot/warm/cold storage
Index Build Time 1M vectors/min Parallel HNSW construction
Replication Lag <100ms Multi-master async replication
πŸ—œοΈ Adaptive Compression Tiers

The architecture adapts to your data. Hot paths get full precision and maximum compute. Cold paths compress automatically and throttle resources. Recent data stays crystal clear; historical data optimizes itself in the background.

Think of it like your computer's memory hierarchyβ€”frequently accessed data lives in fast cache, while older files move to slower, denser storage. RuVector does this automatically for your vectors:

Access Frequency Format Compression What Happens
Hot (>80%) f32 1x Full precision, instant retrieval
Warm (40-80%) f16 2x Slight compression, imperceptible latency
Cool (10-40%) PQ8 8x Smart quantization, ~1ms overhead
Cold (1-10%) PQ4 16x Heavy compression, still fast search
Archive (<1%) Binary 32x Maximum density, batch retrieval

No configuration needed. RuVector tracks access patterns and automatically promotes/demotes vectors between tiers. Your hot data stays fast; your cold data shrinks.

πŸ’‘ Use Cases

AI & LLM Applications

Use Case Features Used Example
RAG Pipelines Vector search, Local embeddings, ruvllm examples/ruvLLM
AI Agent Routing Tiny Dancer, Semantic router, SONA Claude-Flow
Multi-Agent Orchestration GNN, HNSW memory, Consensus Agentic-Flow
Self-Learning Chatbots ReasoningBank, EWC++, Neural patterns examples/meta-cognition
// RAG with local LLM (zero cloud costs)
import { RuVector } from 'ruvector';
import { RuvLLM } from '@ruvector/ruvllm';

const db = new RuVector({ dimensions: 384 });
const llm = new RuvLLM({ model: 'ruvltra-small-0.5b-q4_k_m.gguf' });

// Search learns from usage via GNN layers
const context = await db.search(questionEmbedding, { k: 5 });
const response = await llm.generate(`Context: ${context}\n\nQ: ${question}`);

Search & Discovery

Use Case Features Used Example
Semantic Search HNSW, Metadata filtering, SIMD Core feature
Hybrid Search BM25 + embeddings, Sparse vectors docs/api
Image Similarity CLIP embeddings, Hyperbolic HNSW examples/wasm-react
Code Search Local ONNX embeddings, Graph queries examples/nodejs
// Hybrid search: keyword + semantic
const results = await db.search(query, {
  k: 10,
  filter: { category: 'electronics', price: { $lt: 500 } },
  hybridAlpha: 0.7,  // 70% semantic, 30% keyword
  rerank: true       // GNN-enhanced reranking
});

Recommendations & Personalization

Use Case Features Used Example
Product Recommendations Graph queries, Cypher, GNN examples/graph
Content Personalization User embeddings, Collaborative filtering Real-time adaptation
Similar Items Cosine similarity, Hyperbolic space Hierarchical taxonomies
// Neo4j-style recommendations with learning
MATCH (user:User {id: $userId})-[:VIEWED]->(item:Product)
MATCH (item)-[:SIMILAR_TO]->(rec:Product)
WHERE NOT (user)-[:PURCHASED]->(rec)
RETURN rec ORDER BY rec.gnn_score DESC LIMIT 10

Knowledge Management

Use Case Features Used Example
Knowledge Graphs Hypergraph, Cypher, SPARQL docs/api/CYPHER_REFERENCE.md
Document Q&A Chunking, Embeddings, RAG examples/refrag-pipeline
Scientific Papers SciPix OCR, LaTeX extraction examples/scipix
Research Discovery Citation graphs, Concept linking Hyperedge relationships
// Multi-hop knowledge graph traversal
MATCH (paper:Paper)-[:CITES*1..3]->(cited:Paper)
WHERE paper.topic = 'machine learning'
MATCH (cited)-[:AUTHORED_BY]->(author:Researcher)
RETURN author, count(cited) as influence
ORDER BY influence DESC LIMIT 20

Real-Time & Edge Computing

Use Case Features Used Example
Browser AI WASM, WebGPU, ruvllm-wasm examples/wasm-vanilla
IoT Sensors rvLite, Edge DB, no_std examples/edge
Mobile Apps 2MB footprint, Offline-first examples/edge-net
Streaming Data Real-time indexing, Dynamic min-cut examples/neural-trader
// Browser-based AI (no server required)
import init, { RuvLLMWasm } from '@ruvector/ruvllm-wasm';

await init();
const llm = await RuvLLMWasm.new(true); // WebGPU enabled
await llm.load_model_from_url('https://cdn.example.com/model.gguf');

// Runs entirely in browser
const response = await llm.generate('Explain quantum computing', {
  max_tokens: 200,
  temperature: 0.7
});

Scientific & Research

Use Case Features Used Example
Neural Network Analysis Spiking NN, Meta-cognition examples/meta-cognition
Algorithmic Trading Neural Trader, Time-series examples/neural-trader
Quantum Computing ruQu, Min-cut coherence crates/ruQu
Brain Connectivity Dynamic min-cut, Network analysis examples/mincut
// Neuromorphic computing with spiking networks
use ruvector_nervous_system::{SpikingNetwork, LIFNeuron};

let mut network = SpikingNetwork::new();
network.add_layer(LIFNeuron::new(128));  // 128 spiking neurons
network.enable_stdp();                    // Spike-timing plasticity

// 10-50x more energy efficient than traditional ANNs
let output = network.forward(&input_spikes);

Neuromorphic Computing (micro-hnsw v2.3)

Novel neuromorphic discoveries for brain-inspired vector search in 11.8KB WASM.

Discovery Description Benefit
Spike-Timing Vector Encoding Convert vectors to temporal spike patterns Temporal similarity matching
Homeostatic Plasticity Self-stabilizing network activity Prevents runaway activation
Oscillatory Resonance Gamma-frequency (40Hz) search amplification Improved recall via resonance
Winner-Take-All Circuits Competitive neural selection with lateral inhibition Sparse, efficient representations
Dendritic Computation Non-linear local processing in dendrites Complex pattern detection
STDP Learning Spike-Timing Dependent Plasticity Unsupervised Hebbian learning
// micro-hnsw: Neuromorphic HNSW in 11.8KB WASM
use micro_hnsw_wasm::{MicroHnsw, LIFNeuron, SpikeTrain};

// 256 cores Γ— 32 vectors = 8K total capacity
let mut hnsw = MicroHnsw::new(16, Metric::Cosine);  // 16-dim vectors

// Spike-timing vector encoding
let spike_train = SpikeTrain::encode(&embedding, 8);  // 8-bit temporal resolution

// LIF neuron with STDP learning
let neuron = LIFNeuron::new(0.8);  // threshold = 0.8
neuron.enable_stdp(0.01, 0.012);   // A+ = 0.01, A- = 0.012
neuron.enable_homeostasis(0.1);    // Target rate: 0.1 spikes/ms

// Winner-take-all search with lateral inhibition
let results = hnsw.search_wta(&query, 10, 0.8);  // WTA inhibition = 0.8

Distributed & Enterprise

Use Case Features Used Example
Multi-Region Deployment Raft consensus, Replication docs/cloud-architecture
High Availability Auto-sharding, Failover 99.99% SLA capable
PostgreSQL Integration 230+ SQL functions, pgvector replacement crates/ruvector-postgres
Burst Traffic 10-50x scaling, Load balancing examples/google-cloud
-- PostgreSQL with RuVector extension
CREATE EXTENSION ruvector;

-- Create vector column with GNN-enhanced index
CREATE TABLE documents (
  id SERIAL PRIMARY KEY,
  content TEXT,
  embedding VECTOR(384)
);

CREATE INDEX ON documents USING hnsw_gnn (embedding);

-- Self-improving search
SELECT * FROM documents
ORDER BY embedding <-> query_vector
LIMIT 10;

AI Safety & Coherence (Cognitum Gate)

A 256-tile WASM fabric for real-time AI agent safety decisions with cryptographic verification.

Component Description Memory
Worker Tiles (255) Local graph shards, evidence accumulation, witness fragments 64KB each
TileZero Arbiter Supergraph merging, global decisions, permit tokens Central
Gate Decisions Permit / Defer / Deny with confidence scores <1ms
Witness Receipts Hash-chained cryptographic audit trail Immutable
Feature Description
Anytime-Valid Testing Sequential hypothesis testing with e-values
Min-Cut Aggregation Global coherence via distributed min-cut
Signed Permits Cryptographic tokens for approved actions
Evidence Filters Three-filter decision system (structural, evidence, combined)
// Cognitum Gate: AI agent safety in microseconds
use cognitum_gate_tilezero::{GateDecision, ActionContext, PermitToken};

let gate = CoherenceGate::new_256_tiles();

// Evaluate action safety
let context = ActionContext {
    action_id: "deploy-model-v2".into(),
    action_type: "config_change".into(),
    agent_id: "coder-agent-01".into(),
    ..Default::default()
};

let decision = gate.evaluate(&context).await?;

match decision {
    GateDecision::Permit(token) => {
        // Cryptographically signed permit token
        assert!(token.verify(&gate.public_key()));
        execute_action(token);
    }
    GateDecision::Defer(reason) => {
        // Needs more evidence - retry later
        log::info!("Deferred: {}", reason);
    }
    GateDecision::Deny(evidence) => {
        // Action blocked with witness receipt
        log::warn!("Denied: {:?}", evidence);
    }
}
// Browser: Real-time safety checks via WASM
import { CognitumGate } from '@cognitum/gate';

const gate = await CognitumGate.init();

// Check action in <1ms
const result = await gate.evaluate({
  action: 'modify_user_data',
  agent: 'assistant-v3',
  context: { user_id: '12345' }
});

if (result.permitted) {
  const receipt = result.witnessReceipt;  // Hash-chained audit log
  console.log('Permit token:', result.token);
}

Dynamic Embedding Fine-Tuning

Use Case Features Used Example
Real-Time Adaptation MicroLoRA (<1ms), Per-request learning docs/ruvllm/FINE_TUNING.md
Contrastive Training Triplet loss, Hard negatives, InfoNCE npm/packages/ruvllm
Task-Specific Adapters 5 pre-defined adapters (Coder, Researcher, Security, Architect, Reviewer) docs/training
Catastrophic Forgetting Prevention EWC++ (Elastic Weight Consolidation) crates/sona
Browser Fine-Tuning MicroLoRA WASM, <50KB adapters crates/ruvllm-wasm

Three-Tier Adaptation System:

Tier Technique Latency Use Case
Instant MicroLoRA (rank 1-2) <1ms Per-request adaptation
Background Adapter Merge + EWC++ ~100ms Pattern consolidation
Deep Full Training Pipeline Minutes Periodic optimization
// Real-time embedding fine-tuning with contrastive learning
import { ContrastiveTrainer, tripletLoss } from '@ruvector/ruvllm';

const trainer = new ContrastiveTrainer({
  epochs: 10,
  batchSize: 16,
  margin: 0.5,           // Triplet loss margin
  hardNegativeRatio: 0.7 // 70% hard negatives for better learning
});

// Train with triplets: anchor (task) β†’ positive (correct agent) β†’ negative (wrong agent)
trainer.addTriplet(taskEmb, correctAgentEmb, wrongAgentEmb, isHardNegative);
const results = trainer.train();
trainer.exportTrainingData('./fine-tuned-model');
// Rust: MicroLoRA for per-request adaptation
use ruvllm::lora::{MicroLoRA, MicroLoraConfig, AdaptFeedback};

let lora = MicroLoRA::new(MicroLoraConfig::for_hidden_dim(4096));

// During inference: apply LoRA delta
let output = model.forward(&input)?;
let delta = lora.forward(&input, &TargetModule::QProj);
let enhanced = output.iter().zip(delta.iter()).map(|(o, d)| o + d).collect();

// After response: adapt based on quality feedback
lora.adapt(&input, AdaptFeedback::from_quality(0.85))?;
lora.apply_updates(0.01); // Learning rate
// Browser: Real-time fine-tuning with MicroLoRA WASM
import init, { MicroLoraWasm, MicroLoraConfigWasm } from 'ruvllm-wasm';

await init();
const config = new MicroLoraConfigWasm();
config.rank = 2;           // Tiny rank for browser (<50KB)
config.alpha = 4.0;
config.inFeatures = 768;

const lora = new MicroLoraWasm(config);
const delta = lora.forward(hiddenStates);  // <1ms latency

// Persist to localStorage/IndexedDB
const json = lora.toJson();
localStorage.setItem('user-adapter', json);

Agentic Workflows

Use Case Features Used Example
Version Control for AI Agentic Jujutsu, Branching examples/agentic-jujutsu
Data Pipelines DAG workflows, Self-learning crates/ruvector-dag
Web Scraping Apify integration, Embeddings examples/apify
Synthetic Data Agentic synthesis, Generation Agentic-Flow
// Self-learning DAG workflow
import { QueryDag, AttentionSelector } from '@ruvector/dag';

const dag = new QueryDag();
dag.addNode({ type: 'fetch', source: 'api' });
dag.addNode({ type: 'embed', model: 'local-onnx' });
dag.addNode({ type: 'index', engine: 'hnsw' });

// DAG learns optimal execution paths over time
dag.enableSonaLearning();
await dag.execute();

Installation

Platform Command
npm npm install ruvector
npm (SONA) npm install @ruvector/sona
Browser/WASM npm install ruvector-wasm
Rust cargo add ruvector-core ruvector-graph ruvector-gnn
Rust (SONA) cargo add ruvector-sona
Rust (LLM) cargo add ruvllm

Package Reference

πŸ“– Documentation

Getting Started

Topic Link
Getting Started docs/guides/GETTING_STARTED.md
API Reference docs/api/
Cypher Reference docs/api/CYPHER_REFERENCE.md
Performance Tuning docs/optimization/PERFORMANCE_TUNING_GUIDE.md

Core Components

Topic Link
GNN Architecture docs/gnn/
HNSW Indexing docs/hnsw/
DAG System docs/dag/
Nervous System docs/nervous-system/
Sparse Inference docs/sparse-inference/

Bindings & Integration

Topic Link
Node.js API crates/ruvector-gnn-node/README.md
WASM API crates/ruvector-gnn-wasm/README.md
PostgreSQL docs/postgres/
Self-Learning Hooks docs/hooks/
Integration Guides docs/integration/

LLM & AI

Topic Link
RuvLLM docs/ruvllm/
Training Guides docs/training/

Operations

Topic Link
Architecture docs/architecture/
Cloud Deployment docs/cloud-architecture/
Security docs/security/
Benchmarks docs/benchmarks/
Testing docs/testing/

Research

Topic Link
Research Papers docs/research/
GNN V2 Features docs/research/gnn-v2/
Min-Cut Algorithms docs/research/mincut/
SPARQL Support docs/research/sparql/
Latent Space docs/research/latent-space/

Architecture Decision Records (ADRs)

ADR Status Description
ADR-001 Accepted Core architecture design
ADR-002 Accepted RuvLLM integration
ADR-003 Accepted SIMD optimization strategy
ADR-004 Accepted KV cache management
ADR-005 Accepted WASM runtime integration
ADR-006 Accepted Memory management
ADR-007 Accepted Security review
ADR-008 New Mistral-rs backend integration
ADR-009 New Structured output (SOTA)
ADR-010 New Function calling (SOTA)
ADR-011 New Prefix caching (SOTA)
ADR-012 New Security remediation
ADR-013 New HuggingFace publishing
πŸ“¦ npm Packages (45+ Packages)

Core Packages

Package Description Version Downloads
ruvector All-in-one CLI & package npm downloads
@ruvector/core Core vector database with HNSW npm downloads
@ruvector/node Unified Node.js bindings npm downloads
ruvector-extensions Advanced features: embeddings, UI npm downloads

Graph & GNN

Package Description Version Downloads
@ruvector/gnn Graph Neural Network layers npm downloads
@ruvector/graph-node Hypergraph with Cypher queries npm downloads
@ruvector/graph-wasm Browser graph queries npm downloads
@ruvector/graph-data-generator AI-powered synthetic graph data npm downloads

AI Routing & Attention

Package Description Version Downloads
@ruvector/tiny-dancer FastGRNN neural routing npm downloads
@ruvector/router Semantic router + HNSW npm downloads
@ruvector/attention 39 attention mechanisms npm downloads

Learning & Neural

Package Description Version Downloads
@ruvector/sona Self-Optimizing Neural Architecture npm downloads
@ruvector/spiking-neural Spiking neural networks (SNN) npm downloads

LLM Runtime

Package Description Version Downloads
@ruvector/ruvllm LLM orchestration + SONA npm downloads
@ruvector/ruvllm-cli LLM CLI: inference, benchmarks npm downloads
@ruvector/ruvllm-wasm Browser LLM inference npm downloads

Distributed Systems

Package Description Version Downloads
@ruvector/cluster Distributed clustering npm downloads
@ruvector/server HTTP/gRPC server npm downloads
@ruvector/raft Raft consensus npm downloads
@ruvector/replication Multi-master replication npm downloads
@ruvector/burst-scaling 10-50x burst scaling npm downloads

Edge & Standalone

Package Description Version Downloads
rvlite SQLite-style edge DB npm downloads
@ruvector/rudag Self-learning DAG npm downloads

Agentic & Synthetic Data

Package Description Version Downloads
@ruvector/agentic-synth AI synthetic data generator npm downloads
@ruvector/agentic-integration Distributed agent coordination npm downloads
@cognitum/gate AI coherence gate npm downloads

CLI Tools

Package Description Version Downloads
@ruvector/cli CLI + self-learning hooks npm downloads
@ruvector/postgres-cli PostgreSQL extension CLI npm downloads
@ruvector/scipix Scientific OCR client npm downloads

WASM Packages

Package Description Version Downloads
@ruvector/wasm Unified WASM meta-package npm downloads
@ruvector/wasm-unified Unified TypeScript API npm downloads
@ruvector/gnn-wasm GNN WASM bindings npm downloads
@ruvector/attention-wasm Attention WASM bindings npm downloads
@ruvector/attention-unified-wasm All 39 attention mechanisms npm downloads
@ruvector/tiny-dancer-wasm AI routing WASM npm downloads
@ruvector/router-wasm Semantic router WASM npm downloads
@ruvector/learning-wasm Learning module WASM npm downloads
@ruvector/economy-wasm Tokenomics WASM npm downloads
@ruvector/exotic-wasm Exotic features WASM npm downloads
@ruvector/nervous-system-wasm Nervous system WASM npm downloads
ruvector-attention-wasm WASM attention (Flash, MoE, Hyperbolic, CGT Sheaf) npm downloads
πŸ¦€ Rust Crates (63 Packages)

All crates are published to crates.io under the ruvector-* namespace.

Core Crates

Crate Description crates.io
ruvector-core Vector database engine with HNSW indexing crates.io
ruvector-collections Collection and namespace management crates.io
ruvector-filter Vector filtering and metadata queries crates.io
ruvector-metrics Performance metrics and monitoring crates.io
ruvector-snapshot Snapshot and persistence management crates.io
ruvector-node Node.js bindings via NAPI-RS crates.io
ruvector-wasm WASM bindings for browser/edge crates.io
ruvector-cli CLI and MCP server crates.io
ruvector-bench Benchmarking suite crates.io

Graph & GNN

Crate Description crates.io
ruvector-graph Hypergraph database with Neo4j-style Cypher crates.io
ruvector-graph-node Node.js bindings for graph operations crates.io
ruvector-graph-wasm WASM bindings for browser graph queries crates.io
ruvector-gnn Graph Neural Network layers and training crates.io
ruvector-gnn-node Node.js bindings for GNN inference crates.io
ruvector-gnn-wasm WASM bindings for browser GNN crates.io

Attention Mechanisms

Crate Description crates.io
ruvector-attention 39 attention mechanisms (Flash, Hyperbolic, MoE, Graph) crates.io
ruvector-attention-node Node.js bindings for attention mechanisms crates.io
ruvector-attention-wasm WASM bindings for browser attention crates.io
ruvector-attention-cli CLI for attention testing and benchmarking crates.io

LLM Runtime (ruvllm)

Crate Description crates.io
ruvllm LLM serving runtime with SONA, paged attention, KV cache crates.io
ruvllm-cli CLI for model inference and benchmarking crates.io
ruvllm-wasm WASM bindings for browser LLM inference crates.io

Features: Candle backend, Metal/CUDA acceleration, Apple Neural Engine, GGUF support, SONA learning integration.

cargo add ruvllm --features inference-metal  # Mac with Metal
cargo add ruvllm --features inference-cuda   # NVIDIA GPU

RuvLTRA Models β€” Pre-trained GGUF models optimized for Claude Code workflows:

Model Size Use Case Link
ruvltra-claude-code-0.5b-q4_k_m 398 MB Agent routing HuggingFace
ruvltra-small-0.5b-q4_k_m 398 MB Embeddings HuggingFace
ruvltra-medium-1.1b-q4_k_m 800 MB Classification HuggingFace
# Download and use
wget https://huggingface.co/ruv/ruvltra/resolve/main/ruvltra-small-0.5b-q4_k_m.gguf

Distributed Systems

Crate Description crates.io
ruvector-cluster Cluster management and coordination crates.io
ruvector-raft Raft consensus implementation crates.io
ruvector-replication Data replication and synchronization crates.io
ruvector-server REST/gRPC API server crates.io

AI Agent Routing (Tiny Dancer)

Crate Description crates.io
ruvector-tiny-dancer-core FastGRNN neural inference for AI routing crates.io
ruvector-tiny-dancer-node Node.js bindings for AI routing crates.io
ruvector-tiny-dancer-wasm WASM bindings for browser AI routing crates.io

Router (Semantic Routing)

Crate Description crates.io
ruvector-router-core Core semantic routing engine crates.io
ruvector-router-cli CLI for router testing and benchmarking crates.io
ruvector-router-ffi FFI bindings for other languages crates.io
ruvector-router-wasm WASM bindings for browser routing crates.io

Hybrid Routing achieves 90% accuracy for agent routing using keyword-first strategy with embedding fallback. See Issue #122 for benchmarks and the training tutorials for fine-tuning guides.

Dynamic Min-Cut (December 2025 Breakthrough)

Crate Description crates.io
ruvector-mincut Subpolynomial fully-dynamic min-cut (arXiv:2512.13105) crates.io
ruvector-mincut-node Node.js bindings for min-cut crates.io
ruvector-mincut-wasm WASM bindings for browser min-cut crates.io

First deterministic exact fully-dynamic min-cut with verified n^0.12 subpolynomial update scaling:

  • Brain connectivity β€” Detect Alzheimer's markers by tracking neural pathway changes in milliseconds
  • Network resilience β€” Predict outages before they happen, route around failures instantly
  • AI agent coordination β€” Find communication bottlenecks in multi-agent systems
  • Neural network pruning β€” Identify which connections can be removed without losing accuracy
  • 448+ tests, 256-core parallel optimization, 8KB per core (compile-time verified)
use ruvector_mincut::{DynamicMinCut, Graph};

let mut graph = Graph::new();
graph.add_edge(0, 1, 10.0);
graph.add_edge(1, 2, 5.0);

let mincut = DynamicMinCut::new(&graph);
let (value, cut_edges) = mincut.compute();
// Updates in subpolynomial time as edges change

Quantum Coherence (ruQu)

Crate Description crates.io
ruqu Classical nervous system for quantum machines - coherence via min-cut crates.io
cognitum-gate-kernel Anytime-valid coherence gate kernel crates.io
cognitum-gate-tilezero TileZero arbiter for coherence decisions crates.io
mcp-gate MCP server for coherence gate integration crates.io
prime-radiant Universal coherence engine - sheaf Laplacian AI safety & hallucination detection crates.io

ruQu Features: Real-time quantum coherence assessment, MWPM decoder integration, mincut-gated attention (50% FLOPs reduction).

use ruqu::{CoherenceGate, SyndromeFilter};

let gate = CoherenceGate::new();
let syndrome = gate.assess_coherence(&quantum_state)?;

Advanced Math & Inference

Crate Description crates.io
ruvector-math Core math utilities, SIMD operations crates.io
ruvector-math-wasm WASM bindings for math operations crates.io
ruvector-sparse-inference Sparse tensor inference engine crates.io
ruvector-sparse-inference-wasm WASM bindings for sparse inference crates.io
ruvector-hyperbolic-hnsw HNSW in hyperbolic space (PoincarΓ©/Lorentz) crates.io
ruvector-hyperbolic-hnsw-wasm WASM bindings for hyperbolic HNSW crates.io

FPGA & Hardware Acceleration

Crate Description crates.io
ruvector-fpga-transformer FPGA-optimized transformer inference crates.io
ruvector-fpga-transformer-wasm WASM simulation of FPGA transformer crates.io
ruvector-mincut-gated-transformer MinCut-gated attention for 50% compute reduction crates.io
ruvector-mincut-gated-transformer-wasm WASM bindings for mincut-gated transformer crates.io

Neuromorphic & Bio-Inspired Learning

Crate Description crates.io
ruvector-nervous-system Spiking neural networks with BTSP learning & EWC plasticity crates.io
ruvector-nervous-system-wasm WASM bindings for neuromorphic learning crates.io
ruvector-learning-wasm MicroLoRA adaptation (<100Β΅s latency) crates.io
ruvector-economy-wasm CRDT-based autonomous credit economy crates.io
ruvector-exotic-wasm Exotic AI primitives (strange loops, time crystals) crates.io
ruvector-attention-unified-wasm Unified 18+ attention mechanisms (Neural, DAG, Mamba SSM) crates.io
micro-hnsw-wasm Neuromorphic HNSW with spiking neurons (11.8KB WASM) crates.io

Bio-inspired features:

  • Spiking Neural Networks (SNNs) β€” 10-50x energy efficiency vs traditional ANNs
  • BTSP Learning β€” Behavioral Time-Scale Synaptic Plasticity for rapid adaptation
  • MicroLoRA β€” Sub-microsecond fine-tuning for per-operator learning
  • Mamba SSM β€” State Space Model attention for linear-time sequences

Self-Learning (SONA)

Crate Description crates.io
sona Self-Optimizing Neural Architecture - LoRA, EWC++, ReasoningBank crates.io

SONA Features: Two-tier LoRA adaptation, Elastic Weight Consolidation (EWC++), ReasoningBank for trajectory learning, runtime-adaptive learning for LLM routers.

Standalone Edge Database (rvLite)

Crate Description crates.io
rvlite Standalone 2MB edge database with SQL, SPARQL, Cypher crates.io

rvLite Features: Powered by RuVector WASM, supports SQL/SPARQL/Cypher queries, ideal for IoT, mobile, and embedded systems.

PostgreSQL Extension

Crate Description crates.io
ruvector-postgres pgvector replacement with 230+ SQL functions, SIMD, Flash Attention crates.io

PostgreSQL Features: Drop-in pgvector replacement, GNN layers, hybrid search, multi-tenancy, self-healing, self-learning capabilities.

docker pull ruvnet/ruvector-postgres    # Docker image
cargo add ruvector-postgres             # Rust crate

Self-Learning Query DAG (ruvector-dag)

Crate Description crates.io
ruvector-dag Neural self-learning DAG for automatic query optimization crates.io
ruvector-dag-wasm WASM bindings for browser DAG optimization (58KB gzipped) crates.io

Make your queries faster automatically. RuVector DAG learns from every query execution and continuously optimizes performanceβ€”no manual tuning required.

  • 7 Attention Mechanisms: Automatically selects the best strategy (Topological, Causal Cone, Critical Path, MinCut Gated, etc.)
  • SONA Learning: Self-Optimizing Neural Architecture adapts in <100ΞΌs per query
  • MinCut Control: Rising "tension" triggers automatic strategy switching and predictive healing
  • 50-80% Latency Reduction: Queries improve over time without code changes
use ruvector_dag::{QueryDag, OperatorNode};
use ruvector_dag::attention::{AttentionSelector, SelectionPolicy};

let mut dag = QueryDag::new();
let scan = dag.add_node(OperatorNode::hnsw_scan(0, "vectors_idx", 64));
let filter = dag.add_node(OperatorNode::filter(1, "score > 0.5"));
dag.add_edge(scan, filter).unwrap();

// System learns which attention mechanism works best
let selector = AttentionSelector::new();
let scores = selector.select_and_apply(SelectionPolicy::Adaptive, &dag)?;

See ruvector-dag README for full documentation.

Distributed Systems (Raft & Replication)

Crate Description crates.io
ruvector-raft Raft consensus with leader election & log replication crates.io
ruvector-replication Multi-master replication with vector clocks crates.io
ruvector-cluster Cluster coordination and sharding crates.io

Build distributed vector databases with strong consistency guarantees:

  • Raft Consensus β€” Leader election, log replication, automatic failover
  • Vector Clocks β€” Causal ordering for conflict detection
  • Conflict Resolution β€” Last-Write-Wins, custom merge functions, CRDT support
  • Change Data Capture β€” Stream changes to replicas in real-time
  • Automatic Failover β€” Promote replicas on primary failure
import { RaftNode, ReplicaSet, VectorClock } from '@ruvector/raft';
import { ReplicationManager, ConflictStrategy } from '@ruvector/replication';

// Raft consensus cluster
const node = new RaftNode({
  nodeId: 'node-1',
  peers: ['node-2', 'node-3'],
  electionTimeout: [150, 300],
});

await node.start();
const entry = await node.propose({ op: 'insert', vector: embedding });

// Multi-master replication
const replicaSet = new ReplicaSet();
replicaSet.addReplica('primary', 'localhost:5001', 'primary');
replicaSet.addReplica('replica-1', 'localhost:5002', 'replica');

const manager = new ReplicationManager(replicaSet, {
  conflictStrategy: ConflictStrategy.LastWriteWins,
  syncMode: 'async',
});

await manager.write('vectors', { id: 'v1', data: embedding });

See npm/packages/raft/README.md and npm/packages/replication/README.md for full documentation.

Standalone Vector Database (rvLite)

Crate Description crates.io
rvlite SQLite-style vector database for browsers & edge crates.io

Runs anywhere JavaScript runs β€” browsers, Node.js, Deno, Bun, Cloudflare Workers, Vercel Edge:

  • SQL + SPARQL + Cypher unified query interface
  • Zero dependencies β€” thin orchestration over existing WASM crates
  • Self-learning via SONA ReasoningBank integration
import { RvLite } from '@rvlite/wasm';

const db = await RvLite.create();
await db.sql(`CREATE TABLE docs (id SERIAL, embedding VECTOR(384))`);
await db.sparql(`SELECT ?s WHERE { ?s rdf:type ex:Document }`);
await db.cypher(`MATCH (d:Doc)-[:SIMILAR]->(r) RETURN r`);

Self-Optimizing Neural Architecture (SONA)

Crate Description crates.io npm
ruvector-sona Runtime-adaptive learning with LoRA, EWC++, and ReasoningBank crates.io npm

SONA enables AI systems to continuously improve from user feedback without expensive retraining:

  • Two-tier LoRA: MicroLoRA (rank 1-2) for instant adaptation, BaseLoRA (rank 4-16) for long-term learning
  • EWC++: Elastic Weight Consolidation prevents catastrophic forgetting
  • ReasoningBank: K-means++ clustering stores and retrieves successful reasoning patterns
  • Lock-free Trajectories: ~50ns overhead per step with crossbeam ArrayQueue
  • Sub-millisecond Learning: <0.8ms per trajectory processing
# Rust
cargo add ruvector-sona

# Node.js
npm install @ruvector/sona
use ruvector_sona::{SonaEngine, SonaConfig};

let engine = SonaEngine::new(SonaConfig::default());
let traj_id = engine.start_trajectory(query_embedding);
engine.record_step(traj_id, node_id, 0.85, 150);
engine.end_trajectory(traj_id, 0.90);
engine.learn_from_feedback(LearningSignal::positive(50.0, 0.95));
// Node.js
const { SonaEngine } = require('@ruvector/sona');

const engine = new SonaEngine(256); // 256 hidden dimensions
const trajId = engine.beginTrajectory([0.1, 0.2, ...]);
engine.addTrajectoryStep(trajId, activations, attention, 0.9);
engine.endTrajectory(trajId, 0.95);

Platform Features

πŸ”€ Self-Learning DAG (Query Optimization)

crates.io npm

Make your queries faster automatically. RuVector DAG learns from every query execution and continuously optimizes performanceβ€”no manual tuning required.

What is RuVector DAG?

A self-learning query optimization systemβ€”like a "nervous system" for your database queries that:

  1. Watches how queries execute and identifies bottlenecks
  2. Learns which optimization strategies work best for different query patterns
  3. Adapts in real-time, switching strategies when conditions change
  4. Heals itself by detecting anomalies and fixing problems before they impact users

Unlike traditional query optimizers that use static rules, RuVector DAG learns from actual execution patterns and gets smarter over time.

Key Benefits

Benefit What It Does Result
Automatic Improvement Queries get faster without code changes 50-80% latency reduction after learning
Zero-Downtime Adaptation Adapts to pattern changes automatically No manual index rebuilds
Predictive Prevention Detects rising "tension" early Intervenes before slowdowns
Works Everywhere PostgreSQL, Browser (58KB WASM), Embedded Universal deployment

Use Cases

Use Case Why RuVector DAG Helps
Vector Search Applications Optimize similarity searches that traditional databases struggle with
High-Traffic APIs Automatically adapt to changing query patterns throughout the day
Real-Time Analytics Learn which aggregation paths are fastest for your specific data
Edge/Embedded Systems 58KB WASM build runs in browsers and IoT devices
Multi-Tenant Platforms Learn per-tenant query patterns without manual tuning

How It Works

Query comes in β†’ DAG analyzes execution plan β†’ Best attention mechanism selected
                                                          ↓
Query executes β†’ Results returned β†’ Learning system records what worked
                                                          ↓
                    Next similar query benefits from learned optimizations

The system maintains a MinCut tension score that acts as a health indicator. When tension rises, the system automatically switches to more aggressive optimization strategies and triggers predictive healing.

7 DAG Attention Mechanisms

Mechanism When to Use Trigger
Topological Default baseline Low variance
Causal Cone Downstream impact analysis Write-heavy patterns
Critical Path Latency-bound queries p99 > 2x p50
MinCut Gated Bottleneck-aware weighting Cut tension rising
Hierarchical Lorentz Deep hierarchical queries Depth > 10
Parallel Branch Wide parallel execution Branch count > 3
Temporal BTSP Time-series workloads Temporal patterns

Quick Start

Rust:

use ruvector_dag::{QueryDag, OperatorNode, OperatorType};
use ruvector_dag::attention::{TopologicalAttention, DagAttention};

// Build a query DAG
let mut dag = QueryDag::new();
let scan = dag.add_node(OperatorNode::hnsw_scan(0, "vectors_idx", 64));
let filter = dag.add_node(OperatorNode::filter(1, "score > 0.5"));
let result = dag.add_node(OperatorNode::new(2, OperatorType::Result));

dag.add_edge(scan, filter).unwrap();
dag.add_edge(filter, result).unwrap();

// Compute attention scores
let attention = TopologicalAttention::new(Default::default());
let scores = attention.forward(&dag).unwrap();

Node.js:

import { QueryDag, TopologicalAttention } from '@ruvector/rudag';

// Build DAG
const dag = new QueryDag();
const scan = dag.addNode({ type: 'hnsw_scan', table: 'vectors', k: 64 });
const filter = dag.addNode({ type: 'filter', condition: 'score > 0.5' });
dag.addEdge(scan, filter);

// Apply attention
const attention = new TopologicalAttention();
const scores = attention.forward(dag);
console.log('Attention scores:', scores);

Browser (WASM - 58KB):

<script type="module">
import init, { QueryDag, TopologicalAttention } from '@ruvector/rudag-wasm';

await init();
const dag = new QueryDag();
// ... same API as Node.js
</script>

SONA Learning Integration

SONA (Self-Optimizing Neural Architecture) runs post-query in background, never blocking execution:

use ruvector_dag::sona::{DagSonaEngine, SonaConfig};

let config = SonaConfig {
    embedding_dim: 256,
    lora_rank: 2,           // Rank-2 for <100ΞΌs updates
    ewc_lambda: 5000.0,     // Catastrophic forgetting prevention
    trajectory_capacity: 10_000,
};
let mut sona = DagSonaEngine::new(config);

// Pre-query: Get enhanced embedding (fast path)
let enhanced = sona.pre_query(&dag);

// Execute query...
let execution_time = execute_query(&dag);

// Post-query: Record trajectory (async, background)
sona.post_query(&dag, execution_time, baseline_time, "topological");

Self-Healing

Reactive (Z-score anomaly detection) + Predictive (rising MinCut tension triggers early intervention):

use ruvector_dag::healing::{HealingOrchestrator, AnomalyConfig, PredictiveConfig};

let mut orchestrator = HealingOrchestrator::new();

// Reactive: Z-score anomaly detection
orchestrator.add_detector("query_latency", AnomalyConfig {
    z_threshold: 3.0,
    window_size: 100,
    min_samples: 10,
});

// Predictive: Rising cut tension triggers early intervention
orchestrator.enable_predictive(PredictiveConfig {
    tension_threshold: 0.6,    // Intervene before 0.7 crisis
    variance_threshold: 1.5,   // Rising variance = trouble coming
    lookahead_window: 50,      // Predict 50 queries ahead
});

Query Convergence Example

A slow query converges over several runs:

[run 1] query: SELECT * FROM vectors WHERE embedding <-> $1 < 0.5
        attention: topological (default)
        mincut_tension: 0.23
        latency: 847ms (improvement: 0.4%)

[run 4] mincut_tension: 0.71 > 0.7 (THRESHOLD)
        --> switching attention: topological -> mincut_gated
        latency: 412ms (improvement: 51.5%)

[run 10] attention: mincut_gated
         mincut_tension: 0.22 (stable)
         latency: 156ms (improvement: 81.6%)

Performance Targets

Component Target Notes
Attention (100 nodes) <100ΞΌs All 7 mechanisms
MicroLoRA adaptation <100ΞΌs Rank-2, per-operator
Pattern search (10K) <2ms K-means++ indexing
MinCut update O(n^0.12) Subpolynomial amortized
Anomaly detection <50ΞΌs Z-score, streaming
WASM size 58KB Gzipped, browser-ready

Installation

# Rust
cargo add ruvector-dag

# Node.js
npm install @ruvector/rudag

# WASM (browser)
npm install @ruvector/rudag-wasm

Full Documentation: ruvector-dag README

πŸ“¦ rvLite - Standalone Edge Database

crates.io npm downloads

A complete vector database that runs anywhere JavaScript runs β€” browsers, Node.js, Deno, Bun, Cloudflare Workers, Vercel Edge Functions.

What is rvLite?

rvLite is a lightweight, standalone vector database that runs entirely in WebAssembly. It provides SQL, SPARQL, and Cypher query interfaces, along with graph neural networks and self-learning capabilitiesβ€”all in under 3MB.

Key Features

Feature What It Does Why It Matters
SQL Interface Familiar SELECT, INSERT, WHERE No learning curve
SPARQL Support W3C-compliant RDF queries Knowledge graphs in browser
Cypher Queries Neo4j-style graph queries Graph traversals anywhere
GNN Embeddings Graph neural network layers Self-learning search
ReasoningBank Trajectory learning Gets smarter over time
SIMD Optimized Vector operations accelerated Native-like performance

Runs Everywhere

Platform Status Use Case
Browsers βœ… Offline-first apps
Node.js βœ… Server-side
Deno βœ… Edge functions
Bun βœ… Fast runtime
Cloudflare Workers βœ… Edge computing
Vercel Edge βœ… Serverless

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  RvLite (Orchestration)                 β”‚
β”‚  β”œβ”€ SQL executor                        β”‚
β”‚  β”œβ”€ SPARQL executor                     β”‚
β”‚  β”œβ”€ Cypher executor                     β”‚
β”‚  └─ Unified WASM API                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚ depends on (100% reuse)
               β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Existing WASM Crates                    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β€’ ruvector-core (vectors, SIMD)         β”‚
β”‚  β€’ ruvector-graph-wasm (Cypher)          β”‚
β”‚  β€’ ruvector-gnn-wasm (GNN layers)        β”‚
β”‚  β€’ sona (ReasoningBank learning)         β”‚
β”‚  β€’ micro-hnsw-wasm (ultra-fast HNSW)     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Quick Start

import { RvLite } from '@ruvector/rvlite';

// Create database
const db = await RvLite.create();

// SQL with vector search
await db.sql(`
  CREATE TABLE docs (
    id SERIAL PRIMARY KEY,
    content TEXT,
    embedding VECTOR(384)
  )
`);

await db.sql(`
  SELECT id, content, embedding <=> $1 AS distance
  FROM docs
  ORDER BY distance
  LIMIT 10
`, [queryVector]);

// Cypher graph queries
await db.cypher(`
  CREATE (a:Person {name: 'Alice'})-[:KNOWS]->(b:Person {name: 'Bob'})
`);

// SPARQL RDF queries
await db.sparql(`
  SELECT ?name WHERE {
    ?person foaf:name ?name .
  }
`);

// GNN embeddings
const embeddings = await db.gnn.computeEmbeddings('social_network', [
  db.gnn.createLayer('gcn', { inputDim: 128, outputDim: 64 })
]);

// Self-learning with ReasoningBank
await db.learning.recordTrajectory({ state: [0.1], action: 2, reward: 1.0 });
await db.learning.train({ algorithm: 'q-learning', iterations: 1000 });

Size Budget

Component Size Purpose
ruvector-core ~500KB Vectors, SIMD
SQL parser ~200KB Query parsing
SPARQL executor ~300KB RDF queries
Cypher (graph-wasm) ~600KB Graph queries
GNN layers ~300KB Neural networks
ReasoningBank (sona) ~300KB Self-learning
Total ~2.3MB Gzipped

Installation

# npm
npm install @ruvector/rvlite

# Rust
cargo add rvlite

# Build WASM
wasm-pack build --target web --release

Full Documentation: rvlite README

🌐 Edge-Net - Collective AI Computing Network

npm

Share, Contribute, Compute Together β€” A distributed computing platform that enables collective resource sharing for AI workloads.

What is Edge-Net?

Edge-Net creates a collective computing network where participants share idle browser resources to power distributed AI workloads:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              EDGE-NET: COLLECTIVE AI COMPUTING NETWORK                      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”‚
β”‚   β”‚  Your       β”‚       β”‚  Collective β”‚       β”‚  AI Tasks   β”‚              β”‚
β”‚   β”‚  Browser    │◄─────►│  Network    │◄─────►│  Completed  β”‚              β”‚
β”‚   β”‚  (Idle CPU) β”‚  P2P  β”‚  (1000s)    β”‚       β”‚  for You    β”‚              β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β”‚
β”‚         β”‚                     β”‚                     β”‚                       β”‚
β”‚   Contribute ──────► Earn rUv Units ──────► Use for AI Workloads           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

How It Works

Step What Happens Result
1. Contribute Share unused CPU cycles when browsing Help the network
2. Earn Accumulate rUv (Resource Utility Vouchers) Build credits
3. Use Spend rUv to run AI tasks Access collective power
4. Network Grows More participants = more power Everyone benefits

Why Collective AI Computing?

Traditional AI Collective Edge-Net
Expensive GPU servers Free idle browser CPUs
Centralized data centers Distributed global network
Pay-per-use pricing Contribution-based access
Single point of failure Resilient P2P mesh
Limited by your hardware Scale with the collective

AI Intelligence Stack

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        AI INTELLIGENCE STACK                                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    MicroLoRA Adapter Pool (from ruvLLM)              β”‚   β”‚
β”‚  β”‚  β€’ LRU-managed pool (16 slots) β€’ <50Β΅s rank-1 forward               β”‚   β”‚
β”‚  β”‚  β€’ 4-bit/8-bit quantization    β€’ 2,236+ ops/sec                     β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    SONA - Self-Optimizing Neural Architecture         β”‚   β”‚
β”‚  β”‚  β€’ Instant Loop: Per-request MicroLoRA adaptation                    β”‚   β”‚
β”‚  β”‚  β€’ Background Loop: Hourly K-means consolidation                     β”‚   β”‚
β”‚  β”‚  β€’ Deep Loop: Weekly EWC++ (prevents catastrophic forgetting)        β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚   HNSW Vector Index  β”‚  β”‚  Federated Learning  β”‚  β”‚ ReasoningBank   β”‚  β”‚
β”‚  β”‚   β€’ 150x faster      β”‚  β”‚  β€’ Byzantine tolerantβ”‚  β”‚ β€’ Pattern learn β”‚  β”‚
β”‚  β”‚   β€’ O(log N) search  β”‚  β”‚  β€’ Diff privacy      β”‚  β”‚ β€’ 87x energy    β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core AI Tasks

Task Type Use Case Performance
Vector Search Find similar items 150x speedup via HNSW
Embeddings Text understanding Semantic vectors
Semantic Match Intent detection Classify meaning
LoRA Inference Task adaptation <100Β΅s forward
Pattern Learning Self-optimization ReasoningBank trajectories

Pi-Key Identity System

Ultra-compact cryptographic identity using mathematical constants:

Key Type Size Purpose
Ο€ (Pi-Key) 40 bytes Permanent identity
e (Session) 34 bytes Encrypted sessions
Ο† (Genesis) 21 bytes Network origin markers

Self-Optimizing Features

Feature Mechanism Benefit
Task Routing Multi-head attention Work goes to best nodes
Topology Optimization Self-organizing mesh Network adapts to load
Q-Learning Security Reinforcement learning Learns to defend threats
Economic Balance rUv token system Self-sustaining economy

Quick Start

Add to Your Website:

<script type="module">
  import init, { EdgeNetNode, EdgeNetConfig } from '@ruvector/edge-net';

  async function joinCollective() {
    await init();

    // Join the collective
    const node = new EdgeNetConfig('my-website')
      .cpuLimit(0.3)          // Contribute 30% CPU when idle
      .memoryLimit(256 * 1024 * 1024)  // 256MB max
      .respectBattery(true)   // Reduce on battery
      .build();

    node.start();

    // Monitor participation
    setInterval(() => {
      console.log(`Contributed: ${node.ruvBalance()} rUv`);
    }, 10000);
  }

  joinCollective();
</script>

Use the Collective's AI Power:

// Submit an AI task to the collective
const result = await node.submitTask('vector_search', {
  query: embeddings,
  k: 10,
  index: 'shared-knowledge-base'
}, 5);  // Spend up to 5 rUv

console.log('Similar items:', result);

Monitor Your Contribution:

const stats = node.getStats();
console.log(`
  rUv Earned: ${stats.ruv_earned}
  rUv Spent: ${stats.ruv_spent}
  Tasks Completed: ${stats.tasks_completed}
  Reputation: ${(stats.reputation * 100).toFixed(1)}%
`);

Key Features

Feature Benefit
Idle CPU Utilization Use resources that would otherwise be wasted
Browser-Based No installation, runs in any modern browser
Adjustable Contribution Control how much you share (10-50% CPU)
Battery Aware Automatically reduces on battery power
Fair Distribution Work routed based on capability matching
Privacy-First Pi-Key cryptographic identity
Federated Learning Learn collectively without sharing data
Byzantine Tolerance Resilient to malicious nodes

Installation

# npm
npm install @ruvector/edge-net

# Or include directly
<script src="https://unpkg.com/@ruvector/edge-net"></script>

Full Documentation: edge-net README


AI & Machine Learning

🎲 Agentic-Synth - AI Synthetic Data Generation

npm downloads

AI-Powered Synthetic Data Generation at Scale β€” Generate unlimited, high-quality synthetic data for training AI models, testing systems, and building robust agentic applications.

Why Agentic-Synth?

Problem Solution
Real data is expensive to collect Generate unlimited synthetic data
Privacy-sensitive with compliance risks Fully synthetic, no PII concerns
Slow to generate at scale 10-100x faster than manual creation
Insufficient for edge cases Customizable schemas for any scenario
Hard to reproduce across environments Reproducible with seed values

Key Features

Feature Description
Multi-Model Support Gemini, OpenRouter, GPT, Claude, and 50+ models via DSPy.ts
Context Caching 95%+ performance improvement with intelligent LRU cache
Smart Model Routing Automatic load balancing, failover, and cost optimization
DSPy.ts Integration Self-learning optimization with 20-25% quality improvement
Streaming AsyncGenerator for real-time data flow
Memory Efficient <50MB for datasets up to 10K records

Data Generation Types

Type Use Cases
Time-Series Financial data, IoT sensors, metrics
Events Logs, user actions, system events
Structured JSON, CSV, databases, APIs
Embeddings Vector data for RAG systems

Quick Start

# Install
npm install @ruvector/agentic-synth

# Or run instantly with npx
npx @ruvector/agentic-synth generate --count 100

# Interactive mode
npx @ruvector/agentic-synth interactive

Basic Usage

import { AgenticSynth } from '@ruvector/agentic-synth';

// Initialize with your preferred model
const synth = new AgenticSynth({
  model: 'gemini-pro',
  apiKey: process.env.GEMINI_API_KEY
});

// Generate structured data
const users = await synth.generate({
  schema: {
    name: 'string',
    email: 'email',
    age: 'number:18-65',
    role: ['admin', 'user', 'guest']
  },
  count: 1000
});

// Generate time-series data
const stockData = await synth.timeSeries({
  fields: ['open', 'high', 'low', 'close', 'volume'],
  interval: '1h',
  count: 500,
  volatility: 0.02
});

// Stream large datasets
for await (const batch of synth.stream({ count: 100000, batchSize: 1000 })) {
  await processData(batch);
}

Self-Learning with DSPy

import { AgenticSynth, DSPyOptimizer } from '@ruvector/agentic-synth';

// Enable self-learning optimization
const synth = new AgenticSynth({
  model: 'gemini-pro',
  optimizer: new DSPyOptimizer({
    learningRate: 0.1,
    qualityThreshold: 0.85
  })
});

// Quality improves automatically over time
const data = await synth.generate({
  schema: { ... },
  count: 1000,
  optimize: true  // Enable learning
});

console.log(`Quality score: ${data.metrics.quality}`);
// First run: 0.72
// After 100 runs: 0.94 (+25% improvement)

Performance

Metric Value
With caching 98.2% faster
P99 latency 2500ms β†’ 45ms
Memory <50MB for 10K records
Throughput 1000+ records/sec

Ecosystem Integration

Package Purpose
RuVector Native vector database for RAG
DSPy.ts Prompt optimization
Agentic-Jujutsu Version-controlled generation

Installation

# npm
npm install @ruvector/agentic-synth

# Examples package (50+ production examples)
npm install @ruvector/agentic-synth-examples

Full Documentation: agentic-synth README

πŸ“ˆ Neural Trader - AI Trading System

npm downloads

Production-ready neural trading system combining state-of-the-art ML for automated trading, sports betting, and portfolio management. Zero external ML dependencies, sub-millisecond latency.

Core AI/ML Engines

Engine Description Performance
Fractional Kelly Optimal position sizing with risk-adjusted bet scaling 588,885 ops/s
LSTM-Transformer Deep learning price prediction (temporal + attention) 1,468 seq/s
DRL Portfolio Reinforcement learning ensemble (PPO/SAC/A2C) 17,043 steps/s
Sentiment Alpha Real-time sentiment analysis for alpha generation 3,764 pipeline/s

Why Neural Trader?

Traditional ML Neural Trader
TensorFlow/PyTorch required Zero dependencies
1.2MB+ bundle size 45KB bundle
2.1ms LSTM inference 0.68ms inference
Complex deployment Works in browser & Node.js

Research-Backed Algorithms

Algorithm Research Finding
Kelly Criterion 1/5th fractional achieves 98% ROI with 85% less risk of ruin
LSTM-Transformer Temporal + attention fusion outperforms single architectures
DRL Ensemble PPO/SAC/A2C voting reduces variance vs single agent
Sentiment Alpha 3% annual excess returns documented in academia

Quick Start

import { KellyCriterion, HybridLSTMTransformer, DRLPortfolioManager } from 'neural-trader';

// Kelly position sizing
const kelly = new KellyCriterion();
const stake = kelly.calculateStake(9000, 0.55, 2.0, 0.2);  // 1/5th Kelly
// β†’ $180 recommended stake (2% of bankroll)

// LSTM-Transformer prediction
const model = new HybridLSTMTransformer({
  lstm: { hiddenSize: 64, layers: 2 },
  transformer: { heads: 4, layers: 2 }
});
const prediction = model.predict(candles);
// β†’ { signal: 'BUY', confidence: 0.73, direction: 'bullish' }

// DRL portfolio allocation
const manager = new DRLPortfolioManager({ numAssets: 10 });
await manager.train(marketData, { episodes: 100 });
const allocation = manager.getAction(currentState);
// β†’ [0.15, 0.12, 0.08, ...] optimal weights

Use Cases

Use Case Example
Stock Trading DAG-based pipeline with parallel execution
Sports Betting Kelly sizing with ML calibration
Crypto Trading DRL portfolio for 20+ assets
News Trading Real-time sentiment stream processing
Portfolio Rebalancing Reinforcement learning allocation

Package Ecosystem (20+)

Package Description
neural-trader Core engine with native HNSW, SIMD
@neural-trader/core Ultra-low latency Rust + Node.js bindings
@neural-trader/strategies Strategy management and backtesting
@neural-trader/execution Trade execution and order management
@neural-trader/mcp MCP server with 87+ trading tools
@neural-trader/risk VaR, stress testing, risk metrics
@neural-trader/portfolio Markowitz, Risk Parity optimization
@neural-trader/neural Neural network training
@neural-trader/brokers Alpaca, Interactive Brokers
@neural-trader/sports-betting Arbitrage, Kelly, odds analysis

CLI Interface

# Real-time trading
node cli.js run --strategy=hybrid --symbol=AAPL --capital=100000

# Backtest historical performance
node cli.js backtest --days=252 --capital=50000 --strategy=drl

# Paper trading simulation
node cli.js paper --capital=100000 --strategy=sentiment

# Performance benchmarks
node cli.js benchmark --iterations=100

Exotic Examples

Example Description
Multi-Agent Swarm Distributed trading intelligence with consensus
GNN Correlation Network Graph neural network correlation analysis
Attention Regime Detection Transformer-based market regime classification
Quantum Portfolio QAOA & quantum annealing optimization
Hyperbolic Embeddings PoincarΓ© disk market embeddings
Atomic Arbitrage Cross-exchange with MEV protection

Performance

Module Latency Throughput Status
Kelly Engine 0.014ms 71,295/s βœ“ Ready
LSTM-Transformer 0.681ms 1,468/s βœ“ Ready
DRL Portfolio 0.059ms 17,043/s βœ“ Ready
Sentiment Alpha 0.266ms 3,764/s βœ“ Ready
Full Pipeline 4.68ms 214/s βœ“ Ready

Installation

# npm
npm install neural-trader

# Full ecosystem
npm install @neural-trader/core @neural-trader/strategies @neural-trader/mcp

Full Documentation: neural-trader README

πŸ₯‹ Agentic-Jujutsu - Quantum-Resistant Version Control

npm License

What is Agentic-Jujutsu?

Agentic-Jujutsu is a quantum-resistant, self-learning version control system designed for AI agents. It combines lock-free concurrent operations with ReasoningBank trajectory learning for continuous improvement.

Traditional Git Agentic-Jujutsu
Lock-based commits Lock-free (23x faster)
Manual conflict resolution 87% automatic resolution
Static operations Self-learning from patterns
No quantum protection SHA3-512 + HQC-128
Sequential agents Concurrent multi-agent

Key Features

Feature Performance Description
Concurrent Commits 350 ops/s 23x faster than Git (15 ops/s)
Context Switching <100ms 10x faster than Git (500-1000ms)
Conflict Resolution 87% auto AI-powered pattern matching
Quantum Security <1ms verify SHA3-512 fingerprints, HQC-128 encryption
ReasoningBank Continuous Trajectory learning with verdicts

Quick Start

# Install
npm install agentic-jujutsu

# Basic usage
npx agentic-jujutsu
import { JjWrapper } from 'agentic-jujutsu';

const jj = new JjWrapper();

// Start learning trajectory
jj.startTrajectory('Implement feature X');

// Make changes and commit
await jj.newCommit('Add authentication module');
jj.addToTrajectory();

// Finalize with success score
jj.finalizeTrajectory(0.9, 'Feature implemented successfully');

// Get AI-powered suggestions
const suggestions = await jj.getSuggestions();

Multi-Agent Coordination

// Concurrent commits without locks
const agents = ['agent-1', 'agent-2', 'agent-3'];
await Promise.all(agents.map(agent =>
  jj.newCommit(`Changes from ${agent}`)
));
// All commits succeed - no lock waiting!

Full Documentation: agentic-jujutsu README

πŸ”¬ SciPix - Scientific Document OCR

crates.io docs.rs License

What is SciPix?

SciPix is a blazing-fast, memory-safe OCR engine written in pure Rust, purpose-built for scientific documents, mathematical equations, and technical diagrams.

Feature SciPix Tesseract Mathpix
Simple Text OCR 50ms 120ms 200ms*
Math Equation 80ms N/A 150ms*
Batch (100 images) 2.1s 8.5s N/A
Memory Usage 45MB 180MB Cloud
LaTeX Output Yes No Yes

*API latency, not processing time

Key Features

Feature Description
ONNX Runtime GPU-accelerated with CUDA, TensorRT, CoreML
LaTeX Output Mathematical equation recognition with LaTeX, MathML, AsciiMath
SIMD Optimized 4x faster image preprocessing with AVX2, SSE4, NEON
REST API Production-ready HTTP server with rate limiting
MCP Server Integrate with Claude, ChatGPT via Model Context Protocol
WebAssembly Run OCR directly in browsers

Quick Start

# Add to Cargo.toml
cargo add ruvector-scipix

# With features
ruvector-scipix = { version = "0.1.16", features = ["ocr", "math", "optimize"] }
use ruvector_scipix::{SciPixOcr, OcrConfig};

// Initialize OCR engine
let ocr = SciPixOcr::new(OcrConfig::default())?;

// Process scientific image
let result = ocr.process_image("equation.png")?;
println!("LaTeX: {}", result.latex);
println!("Confidence: {:.2}%", result.confidence * 100.0);

Use Cases

  • Academic Paper Digitization - Extract text and equations from scanned research papers
  • Math Homework Assistance - Convert handwritten equations to LaTeX for AI tutoring
  • Technical Documentation - Process engineering diagrams and scientific charts
  • AI/LLM Integration - Feed scientific content to language models via MCP

Full Documentation: scipix README

🧠 Meta-Cognition SNN - Spiking Neural Networks

What is Meta-Cognition SNN?

A hybrid AI architecture combining Spiking Neural Networks (SNN), SIMD-optimized vector operations, and 5 attention mechanisms with meta-cognitive self-discovery capabilities.

Capability Performance Description
Spiking Neural Networks 10-50x faster LIF neurons + STDP learning with N-API SIMD
SIMD Vector Operations 5-54x faster Loop-unrolled distance/dot product calculations
5 Attention Mechanisms Sub-millisecond Multi-Head, Flash, Linear, Hyperbolic, MoE
Vector Search 150x faster RuVector-powered semantic search
Meta-Cognition Autonomous Self-discovering emergent capabilities

SIMD Performance

Operation Speedup Notes
LIF Updates 16.7x Leaky integrate-and-fire neurons
Synaptic Forward 14.9x Forward propagation
STDP Learning 26.3x Spike-timing dependent plasticity
Distance (128d) 54x Euclidean distance calculation
Full Simulation 18.4x End-to-end SNN simulation

5 Attention Mechanisms

Mechanism Best For Latency
Flash Long sequences 0.023ms
MoE Specialized domains 0.021ms
Multi-Head Complex patterns 0.047ms
Linear Real-time processing 0.075ms
Hyperbolic Hierarchical data 0.222ms

Quick Start

# Install and run demos
cd examples/meta-cognition-spiking-neural-network
npm install
node demos/run-all.js
const { createFeedforwardSNN, rateEncoding } = require('./demos/snn/lib/SpikingNeuralNetwork');

// Create SNN with SIMD optimization
const snn = createFeedforwardSNN([100, 50, 10], {
  dt: 1.0,
  tau: 20.0,
  a_plus: 0.005,
  lateral_inhibition: true
});

// Train with STDP
const input = rateEncoding(pattern, snn.dt, 100);
snn.step(input);

6 Emergent Discoveries

  1. Multi-Scale Attention Hierarchy (Novelty: 5/5)
  2. Spike Synchronization Patterns
  3. Attention-Gated Spike Propagation
  4. Temporal Coherence Emergence
  5. Emergent Sparsity (80% fewer active neurons)
  6. Meta-Plasticity (faster learning on later tasks)

Full Documentation: meta-cognition-snn README

πŸ€– RuvLLM - Self-Learning LLM Orchestration

Rust License HuggingFace

What is RuvLLM?

RuvLLM is a self-learning language model orchestration system that combines frozen foundation models with adaptive memory and intelligent routing. Unlike traditional LLMs that rely solely on static parameters, RuvLLM continuously improves from every interaction.

"The intelligence is not in one model anymore. It is in the loop."

SONA: 3-Tier Temporal Learning

Loop Frequency Latency Description
A: Instant Per-request <100ΞΌs MicroLoRA adaptation (rank 1-2)
B: Background Hourly ~1.3ms K-means++ clustering, base LoRA (rank 4-16)
C: Deep Weekly N/A EWC++ consolidation, concept hierarchies

Core Components

Component Description
LFM2 Cortex Frozen reasoning engine (135M-2.6B params)
Ruvector Memory Adaptive synaptic mesh with HNSW indexing
FastGRNN Router Intelligent model selection circuit
Graph Attention 8-head attention with edge features
SONA Engine LoRA + EWC++ + ReasoningBank

Performance (CPU-Only)

Metric Value
Initialization 3.71ms
Average Query 0.09ms
Session Query 0.04ms
Throughput ~38,000 q/s
Memory ~50MB

Quick Start

use ruvllm::{RuvLLMOrchestrator, OrchestratorConfig};

// Initialize orchestrator
let config = OrchestratorConfig::default();
let orchestrator = RuvLLMOrchestrator::new(config)?;

// Query with automatic learning
let response = orchestrator.query("Explain quantum entanglement").await?;
println!("{}", response.text);

// Response improves over time as SONA learns patterns

Federated Learning

// Ephemeral agents collect trajectories
let agent = EphemeralAgent::new("task-specific-agent");
agent.process_task(&task).await?;
let export = agent.export();

// Central coordinator aggregates learning
coordinator.accept_export(export)?;
coordinator.consolidate();  // Share patterns with new agents

Dynamic Embedding Fine-Tuning

RuvLLM's adaptive learning system enables real-time model improvement without retraining.

Feature Description Latency
MicroLoRA Per-request adaptation (rank 1-2), <50KB adapters <1ms
Contrastive Training Triplet loss with hard negatives for embedding optimization Batch
Task-Specific Adapters Pre-tuned for Coder, Researcher, Security, Architect, Reviewer Hot-swap
EWC++ Consolidation Prevents catastrophic forgetting during continuous learning Background
Adapter Merging Average, Weighted, SLERP, TIES, DARE strategies On-demand
// Contrastive fine-tuning for agent routing
import { ContrastiveTrainer } from '@ruvector/ruvllm';

const trainer = new ContrastiveTrainer({
  margin: 0.5,
  hardNegativeRatio: 0.7
});

// Learn: task β†’ correct agent, not wrong agent
trainer.addTriplet(taskEmb, correctAgentEmb, wrongAgentEmb, true);
const model = trainer.train();
// Task-specific adapter hot-swapping
use ruvllm::lora::RuvLtraAdapters;

let adapters = RuvLtraAdapters::new();
let coder = adapters.create_lora("coder", 768)?;      // Rank 16, code patterns
let security = adapters.create_lora("security", 768)?; // Rank 16, vulnerability detection

// Hot-swap at runtime without model reload
orchestrator.set_adapter(coder);
let code_response = orchestrator.query("Implement binary search").await?;

orchestrator.set_adapter(security);
let audit_response = orchestrator.query("Audit this code for vulnerabilities").await?;

Advanced Features

  • SIMD Inference: AVX2/AVX512/SSE4.1 optimization
  • Q4 Quantization: 4-bit weights for memory efficiency
  • HuggingFace Export: Export LoRA weights and preference pairs
  • Multi-Model Routing: SmolLM, Qwen2, TinyLlama selection
  • WASM Support: Run SONA in browsers and edge devices
  • Browser Fine-Tuning: MicroLoRA WASM with localStorage persistence

Full Documentation: ruvLLM README | Fine-Tuning Guide | Task Adapters

πŸ—œοΈ REFRAG - Compress-Sense-Expand RAG

What is REFRAG?

REFRAG implements the Compress-Sense-Expand architecture from arXiv:2509.01092, achieving ~30x RAG latency reduction by storing pre-computed representation tensors instead of raw text.

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   COMPRESS     │───▢│     SENSE      │───▢│    EXPAND      β”‚
β”‚    Layer       β”‚    β”‚     Layer      β”‚    β”‚    Layer       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Binary tensor         Policy network        Dimension projection
storage with          decides COMPRESS      (768 β†’ 4096 dims)
zero-copy access      vs EXPAND

Compression Strategies

Strategy Compression Use Case
None 1x Maximum precision
Float16 2x Good balance
Int8 4x Memory constrained
Binary 32x Extreme compression

Policy Networks

Policy Latency Description
ThresholdPolicy ~2ΞΌs Cosine similarity threshold
LinearPolicy ~5ΞΌs Single layer classifier
MLPPolicy ~15ΞΌs Two-layer neural network

Quick Start

# Run demo
cargo run --bin refrag-demo

# Run benchmarks
cargo run --bin refrag-benchmark --release
use refrag_pipeline_example::{RefragStore, RefragEntry};

// Create REFRAG-enabled store
let store = RefragStore::new(384, 768)?;

// Insert with representation tensor
let entry = RefragEntry::new("doc_1", search_vector, "The quick brown fox...")
    .with_tensor(tensor_bytes, "llama3-8b");
store.insert(entry)?;

// Hybrid search (policy-based COMPRESS/EXPAND)
let results = store.search_hybrid(&query, 10, Some(0.85))?;

for result in results {
    match result.response_type {
        RefragResponseType::Compress => {
            // Tensor directly injectable into LLM context
            println!("Tensor: {} dims", result.tensor_dims.unwrap());
        }
        RefragResponseType::Expand => {
            // Original text when full context needed
            println!("Text: {}", result.content.unwrap());
        }
    }
}

Target LLM Dimensions

Source Target LLM
768 4096 LLaMA-3 8B
768 8192 LLaMA-3 70B
1536 8192 GPT-4

Full Documentation: refrag-pipeline README

🐦 7sense - Bioacoustic Intelligence Platform

Rust Tests Coverage

What is 7sense?

7sense transforms bird calls into navigable geometric space using cutting-edge AI and vector search. It converts audio recordings of bird songs into rich, searchable embeddings using Perch 2.0 neural networks and ultra-fast HNSW indexing.

Traditional Monitoring 7sense
Expert human listeners Instant AI species ID
Basic spectrogram analysis Neural embeddings (1536-dim)
Limited scale Millions of recordings
Manual pattern finding Automated discovery

Performance Targets

Metric Target Status
HNSW Search Speedup 150x vs brute force Achieved
Query Latency (p99) < 50ms Achieved
Recall@10 >= 0.95 Achieved
Embedding Throughput > 100 segments/sec Achieved
Memory per 1M vectors < 6 GB Achieved

9 Rust Crates

Crate Description
sevensense-core Species taxonomy, temporal types
sevensense-audio WAV/MP3/FLAC, Mel spectrograms
sevensense-embedding Perch 2.0 ONNX, 1536-dim vectors
sevensense-vector HNSW with 150x speedup
sevensense-learning GNN training, EWC regularization
sevensense-analysis HDBSCAN clustering, Markov models
sevensense-interpretation Evidence packs, species narratives
sevensense-api GraphQL, REST, WebSocket streaming
sevensense-benches Criterion.rs performance suites

Quick Start

# Build and run
cd examples/vibecast-7sense
cargo build --release
cargo run -p sevensense-api --release
use sevensense_audio::AudioProcessor;
use sevensense_embedding::EmbeddingPipeline;
use sevensense_vector::HnswIndex;

// Load and process audio
let processor = AudioProcessor::new(Default::default());
let segments = processor.process_file("recording.wav").await?;

// Generate Perch 2.0 embeddings
let pipeline = EmbeddingPipeline::new(Default::default()).await?;
let embeddings = pipeline.embed_segments(&segments).await?;

// Search for similar calls (150x faster)
let index = HnswIndex::new(Default::default());
index.add_batch(&embeddings)?;
let neighbors = index.search(&embeddings[0], 10)?;

println!("Found {} similar bird calls", neighbors.len());

Use Cases

  • Species Identification - Instant predictions with confidence scores
  • Pattern Discovery - Find similar calls across millions of recordings
  • Behavioral Insights - Detect singing patterns, dialects, anomalies
  • Conservation Monitoring - Track biodiversity at scale

Full Documentation: 7sense README

🧬 EXO-AI - Advanced Cognitive Substrate

crates.io docs.rs License

What is EXO-AI?

EXO-AI 2025 is a comprehensive cognitive substrate implementing cutting-edge theories from neuroscience, physics, and consciousness research. It provides 9 interconnected Rust crates totaling ~15,800+ lines of research-grade code.

Traditional AI systems process information. EXO-AI aims to understand it.

SIMD-Accelerated Performance

Operation Speedup Notes
Distance (128d) 54x AVX2/NEON optimized
Cosine Similarity 2.73x Batch operations
Pattern Matching 8-54x Loop-unrolled
Meta-Simulation 13+ quadrillion/s From ultra-low-latency-sim

9 Rust Crates

Crate Description
exo-core IIT consciousness (Ξ¦) measurement & Landauer thermodynamics
exo-temporal Temporal memory with causal tracking & consolidation
exo-hypergraph Topological analysis with persistent homology
exo-manifold SIREN networks + SIMD-accelerated retrieval
exo-exotic 10 cutting-edge cognitive experiments
exo-federation Post-quantum federated cognitive mesh
exo-backend-classical SIMD-accelerated compute backend
exo-wasm Browser & edge WASM deployment
exo-node Node.js bindings via NAPI-RS

Key Theories Implemented

Theory Implementation
IIT (Integrated Information Theory) Consciousness level (Ξ¦) measurement
Landauer's Principle Computational thermodynamics
Free Energy Principle Friston's predictive processing
Strange Loops Hofstadter's self-referential patterns
Morphogenesis Pattern formation emergence

Quick Start

[dependencies]
exo-core = "0.1"
exo-temporal = "0.1"
exo-exotic = "0.1"
exo-manifold = "0.1"  # SIMD acceleration!
use exo_core::consciousness::{ConsciousnessSubstrate, IITConfig};
use exo_core::thermodynamics::CognitiveThermometer;

// Measure integrated information (Ξ¦)
let substrate = ConsciousnessSubstrate::new(IITConfig::default());
substrate.add_pattern(pattern);
let phi = substrate.compute_phi();
println!("Consciousness level (Ξ¦): {:.4}", phi);

// Track computational thermodynamics
let thermo = CognitiveThermometer::new(300.0); // Kelvin
let cost = thermo.landauer_cost_bits(1024);
println!("Landauer cost: {:.2e} J", cost);

SIMD Pattern Retrieval

use exo_manifold::{ManifoldEngine, cosine_similarity_simd, batch_distances};

// 54x faster similarity search
let query = vec![0.5; 768];
let results = engine.retrieve(&query, 10)?;

// Batch distance computation
let distances = batch_distances(&query, &database);  // 8-54x speedup

Full Documentation: exo-ai README


Database Extensions

🐘 PostgreSQL Extension

crates.io npm Docker Hub Docker

The most advanced PostgreSQL vector extension β€” a drop-in pgvector replacement with 230+ SQL functions, hardware-accelerated SIMD operations, and built-in AI capabilities. Transform your existing PostgreSQL database into a full-featured vector search engine with GNN layers, attention mechanisms, and self-learning capabilities.

# Quick Install from Docker Hub
docker run -d --name ruvector \
  -e POSTGRES_PASSWORD=secret \
  -p 5432:5432 \
  ruvnet/ruvector-postgres:latest

# Connect and use
psql -h localhost -U ruvector -d ruvector_test

# Create extension
CREATE EXTENSION ruvector;

Why RuVector Postgres?

  • Zero Migration β€” Works with existing pgvector code, just swap the extension
  • 10x More Functions β€” 230+ SQL functions vs pgvector's ~20
  • 2x Faster β€” AVX-512/AVX2/NEON SIMD acceleration
  • AI-Native β€” GNN layers, 39 attention mechanisms, local embeddings
  • Self-Learning β€” Improves search quality over time with ReasoningBank
Feature pgvector RuVector Postgres
SQL Functions ~20 230+
SIMD Acceleration Basic AVX-512/AVX2/NEON (~2x faster)
Index Types HNSW, IVFFlat HNSW, IVFFlat + Hyperbolic
Attention Mechanisms ❌ 39 types (Flash, Linear, Graph)
GNN Layers ❌ GCN, GraphSAGE, GAT, GIN
Sparse Vectors ❌ BM25, TF-IDF, SPLADE
Self-Learning ❌ ReasoningBank, trajectory learning
Local Embeddings ❌ 6 fastembed models built-in
Multi-Tenancy ❌ Built-in namespace isolation
Quantization ❌ Scalar, Product, Binary (4-32x compression)
🐳 Docker Hub (Recommended)

Pull from Docker Hub: hub.docker.com/r/ruvnet/ruvector-postgres

# Quick start
docker run -d --name ruvector \
  -e POSTGRES_PASSWORD=secret \
  -p 5432:5432 \
  ruvnet/ruvector-postgres:latest

# Connect
psql -h localhost -U ruvector -d ruvector_test

# Create extension
CREATE EXTENSION ruvector;

Environment Variables:

Variable Default Description
POSTGRES_USER ruvector Database user
POSTGRES_PASSWORD ruvector Database password
POSTGRES_DB ruvector_test Default database

Docker Compose:

version: '3.8'
services:
  ruvector-postgres:
    image: ruvnet/ruvector-postgres:latest
    environment:
      POSTGRES_PASSWORD: secret
      POSTGRES_DB: ruvector_test
    ports:
      - "5432:5432"
    volumes:
      - pgdata:/var/lib/postgresql/data

volumes:
  pgdata:

Available Tags:

  • ruvnet/ruvector-postgres:latest - PostgreSQL + RuVector 2.0
  • ruvnet/ruvector-postgres:2.0.0 - Specific version
πŸ“¦ npm CLI
# Install globally
npm install -g @ruvector/postgres-cli

# Or use npx
npx @ruvector/postgres-cli --help

# Commands available as 'ruvector-pg' or 'rvpg'
ruvector-pg --version
rvpg --help

CLI Commands:

# Install extension to existing PostgreSQL
ruvector-pg install

# Create vector table with HNSW index
ruvector-pg vector create table embeddings --dim 1536 --index hnsw

# Import vectors from file
ruvector-pg vector import embeddings data.json

# Search vectors
ruvector-pg vector search embeddings --query "0.1,0.2,..." --limit 10

# Benchmark performance
ruvector-pg bench --iterations 1000

# Check extension status
ruvector-pg status

Programmatic Usage:

import { RuvectorPG } from '@ruvector/postgres-cli';

const client = new RuvectorPG({
  host: 'localhost',
  port: 5432,
  database: 'vectors',
  user: 'postgres',
  password: 'secret'
});

// Create table with HNSW index
await client.createTable('embeddings', {
  dimensions: 1536,
  indexType: 'hnsw',
  distanceMetric: 'cosine'
});

// Insert vectors
await client.insert('embeddings', {
  id: '1',
  vector: [0.1, 0.2, ...],
  metadata: { source: 'openai' }
});

// Search
const results = await client.search('embeddings', queryVector, { limit: 10 });
πŸ¦€ Rust Crate
# Install pgrx (PostgreSQL extension framework)
cargo install cargo-pgrx --version "0.12.9" --locked
cargo pgrx init

# Build and install extension
cd crates/ruvector-postgres
cargo pgrx install --release

# Or install specific PostgreSQL version
cargo pgrx install --release --pg-config /usr/lib/postgresql/17/bin/pg_config

Cargo.toml:

[dependencies]
ruvector-postgres = "2.0"

# Optional features
[features]
default = ["pg17"]
pg16 = ["ruvector-postgres/pg16"]
pg15 = ["ruvector-postgres/pg15"]

# AI features (opt-in)
ai-complete = ["ruvector-postgres/ai-complete"]  # All AI features
learning = ["ruvector-postgres/learning"]         # Self-learning
attention = ["ruvector-postgres/attention"]       # 39 attention mechanisms
gnn = ["ruvector-postgres/gnn"]                   # Graph neural networks
hyperbolic = ["ruvector-postgres/hyperbolic"]     # Hyperbolic embeddings
embeddings = ["ruvector-postgres/embeddings"]     # Local embedding generation

Build with all features:

cargo pgrx install --release --features "ai-complete,embeddings"
πŸ“ SQL Examples
-- Enable extension
CREATE EXTENSION ruvector;

-- Create table with vector column
CREATE TABLE documents (
  id SERIAL PRIMARY KEY,
  content TEXT,
  embedding VECTOR(1536)
);

-- Create HNSW index
CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops)
  WITH (m = 16, ef_construction = 200);

-- Insert vectors
INSERT INTO documents (content, embedding)
VALUES ('Hello world', '[0.1, 0.2, ...]'::vector);

-- Semantic search (cosine similarity)
SELECT id, content, embedding <=> '[0.1, 0.2, ...]'::vector AS distance
FROM documents
ORDER BY distance
LIMIT 10;

-- Hybrid search (vector + full-text)
SELECT id, content
FROM documents
WHERE to_tsvector(content) @@ to_tsquery('machine & learning')
ORDER BY embedding <=> query_embedding
LIMIT 10;

-- GNN-enhanced search (with learning)
SELECT * FROM ruvector_gnn_search(
  'documents',
  '[0.1, 0.2, ...]'::vector,
  10,  -- limit
  'gcn' -- gnn_type: gcn, graphsage, gat, gin
);

-- Generate embeddings locally (no API needed)
SELECT ruvector_embed('all-MiniLM-L6-v2', 'Your text here');

-- Flash attention
SELECT ruvector_flash_attention(query, key, value);

See ruvector-postgres README for full SQL API reference (230+ functions).


Developer Tools

πŸ› οΈ Tools & Utilities
Crate Description crates.io
ruvector-bench Benchmarking suite for vector operations crates.io
ruvector-metrics Observability, metrics, and monitoring crates.io
ruvector-filter Metadata filtering and query predicates crates.io
ruvector-collections Multi-tenant collection management crates.io
ruvector-snapshot Point-in-time snapshots and backups crates.io
micro-hnsw-wasm Lightweight HNSW implementation for WASM crates.io

Embedded & IoT

Crate Description Target
ruvector-esp32 ESP32/ESP-IDF vector search ESP32, ESP32-S3
rvlite SQLite-style edge DB (no_std compatible) ARM, RISC-V, WASM
micro-hnsw-wasm <50KB HNSW for constrained devices WASM, embedded
// ESP32 example (no_std)
#![no_std]
use rvlite::RvLite;

let db = RvLite::new(128);  // 128-dim vectors
db.insert(0, &embedding);
let results = db.search(&query, 5);

Browser & Edge (WASM)

🌐 WASM Packages (Browser & Edge)

Specialized WebAssembly modules for browser and edge deployment. These packages bring advanced AI and distributed computing primitives to JavaScript/TypeScript with near-native performance.

Quick Install (All Browser WASM)

# Core vector search
npm install ruvector-wasm @ruvector/rvlite

# AI & Neural
npm install @ruvector/gnn-wasm @ruvector/attention-wasm @ruvector/sona-wasm

# Graph & Algorithms
npm install @ruvector/graph-wasm @ruvector/mincut-wasm @ruvector/hyperbolic-hnsw-wasm

# Exotic AI
npm install @ruvector/economy-wasm @ruvector/exotic-wasm @ruvector/nervous-system-wasm

# LLM (browser inference)
npm install @ruvector/ruvllm-wasm
Category Packages Total Size
Core ruvector-wasm, rvlite ~200KB
AI/Neural gnn, attention, sona ~300KB
Graph graph, mincut, hyperbolic-hnsw ~250KB
Exotic economy, exotic, nervous-system ~350KB
LLM ruvllm-wasm ~500KB

Installation

# Install individual packages
npm install @ruvector/learning-wasm
npm install @ruvector/economy-wasm
npm install @ruvector/exotic-wasm
npm install @ruvector/nervous-system-wasm
npm install @ruvector/attention-unified-wasm

# Or build from source
cd crates/ruvector-learning-wasm
wasm-pack build --target web

ruvector-learning-wasm

MicroLoRA, BTSP, and HDC for self-learning AI systems.

Ultra-fast Low-Rank Adaptation (LoRA) optimized for WASM execution with <100us adaptation latency. Designed for real-time per-operator learning in query optimization and AI agent systems.

Feature Performance Description
MicroLoRA <100us latency Rank-2 LoRA matrices for instant weight adaptation
Per-Operator Scoping Zero-allocation hot paths Separate adapters for different operator types
Trajectory Tracking Lock-free buffers Record learning trajectories for replay

Architecture:

Input Embedding (256-dim)
       |
       v
  +---------+
  | A: d x 2 |  Down projection
  +---------+
       |
       v
  +---------+
  | B: 2 x d |  Up projection
  +---------+
       |
       v
Delta W = alpha * (A @ B)
       |
       v
Output = Input + Delta W

JavaScript/TypeScript Example:

import init, { WasmMicroLoRA } from '@ruvector/learning-wasm';

await init();

// Create MicroLoRA engine (256-dim, alpha=0.1, lr=0.01)
const lora = new WasmMicroLoRA(256, 0.1, 0.01);

// Forward pass with adaptation
const input = new Float32Array(256).fill(0.5);
const output = lora.forward_array(input);

// Adapt based on gradient signal
const gradient = new Float32Array(256).fill(0.1);
lora.adapt_array(gradient);

// Adapt with reward signal for RL
lora.adapt_with_reward(0.8);  // 80% improvement

console.log(`Adaptations: ${lora.adapt_count()}`);
console.log(`Delta norm: ${lora.delta_norm()}`);

ruvector-economy-wasm

CRDT-based autonomous credit economy for distributed compute networks.

P2P-safe concurrent transactions using Conflict-free Replicated Data Types (CRDTs). Features a 10x-to-1x early adopter contribution curve and stake/slash mechanisms for participation incentives.

Feature Description
CRDT Ledger G-Counter (earned) + PN-Counter (spent) for P2P consistency
Contribution Curve 10x early adopter multiplier decaying to 1x baseline
Stake/Slash Participation requirements with slashing for bad actors
Reputation Scoring Multi-factor: accuracy * uptime * stake_weight
Merkle Verification SHA-256 state root for quick ledger verification

Architecture:

+------------------------+
|     CreditLedger       |  <-- CRDT-based P2P-safe ledger
|  +------------------+  |
|  | G-Counter: Earned|  |  <-- Monotonically increasing
|  | PN-Counter: Spent|  |  <-- Can handle disputes/refunds
|  | Stake: Locked    |  |  <-- Participation requirement
|  | State Root       |  |  <-- Merkle root for verification
|  +------------------+  |
+------------------------+
          |
          v
+------------------------+
|  ContributionCurve     |  <-- Exponential decay: 10x -> 1x
+------------------------+
          |
          v
+------------------------+
|   ReputationScore      |  <-- accuracy * uptime * stake_weight
+------------------------+

JavaScript/TypeScript Example:

import init, {
  CreditLedger,
  ReputationScore,
  contribution_multiplier
} from '@ruvector/economy-wasm';

await init();

// Create a new ledger for a node
const ledger = new CreditLedger("node-123");

// Earn credits (with early adopter multiplier)
ledger.creditWithMultiplier(100, "task:abc");
console.log(`Balance: ${ledger.balance()}`);
console.log(`Multiplier: ${ledger.currentMultiplier()}x`);

// Stake for participation
ledger.stake(50);
console.log(`Staked: ${ledger.stakedAmount()}`);

// Check multiplier for network compute hours
const mult = contribution_multiplier(50000.0);  // 50K hours
console.log(`Network multiplier: ${mult}x`);  // ~8.5x

// Track reputation
const rep = new ReputationScore(0.95, 0.98, 1000);
console.log(`Composite score: ${rep.composite_score()}`);

// P2P merge with another ledger (CRDT operation)
const otherEarned = new Uint8Array([/* serialized earned counter */]);
const otherSpent = new Uint8Array([/* serialized spent counter */]);
const mergedCount = ledger.merge(otherEarned, otherSpent);

ruvector-exotic-wasm

Exotic AI mechanisms for emergent behavior in distributed systems.

Novel coordination primitives inspired by decentralized governance, developmental biology, and quantum physics.

Mechanism Inspiration Use Case
Neural Autonomous Organization (NAO) DAOs + oscillatory sync Decentralized AI agent governance
Morphogenetic Network Developmental biology Emergent network topology
Time Crystal Coordinator Quantum time crystals Robust distributed coordination

NAO Features:

  • Stake-weighted quadratic voting
  • Oscillatory synchronization for coherence
  • Quorum-based consensus (configurable threshold)

Morphogenetic Network Features:

  • Cellular differentiation through morphogen gradients
  • Emergent network topology via growth/pruning
  • Synaptic pruning for optimization

Time Crystal Features:

  • Period-doubled oscillations for stable coordination
  • Floquet engineering for noise resilience
  • Phase-locked agent synchronization

JavaScript/TypeScript Example:

import init, {
  WasmNAO,
  WasmMorphogeneticNetwork,
  WasmTimeCrystal,
  ExoticEcosystem
} from '@ruvector/exotic-wasm';

await init();

// Neural Autonomous Organization
const nao = new WasmNAO(0.7);  // 70% quorum
nao.addMember("agent_1", 100);  // 100 stake
nao.addMember("agent_2", 50);

const propId = nao.propose("Upgrade memory backend");
nao.vote(propId, "agent_1", 0.9);  // 90% approval weight
nao.vote(propId, "agent_2", 0.6);

if (nao.execute(propId)) {
  console.log("Proposal executed!");
}

// Morphogenetic Network
const net = new WasmMorphogeneticNetwork(100, 100);  // 100x100 grid
net.seedSignaling(50, 50);  // Seed signaling cell at center

for (let i = 0; i < 1000; i++) {
  net.grow(0.1);  // 10% growth rate
}
net.differentiate();
net.prune(0.1);  // 10% pruning threshold

// Time Crystal Coordinator
const crystal = new WasmTimeCrystal(10, 100);  // 10 oscillators, 100ms period
crystal.crystallize();

for (let i = 0; i < 200; i++) {
  const pattern = crystal.tick();
  // Use pattern for coordination decisions
}

console.log(`Synchronization: ${crystal.orderParameter()}`);

// Combined Ecosystem (all three working together)
const eco = new ExoticEcosystem(5, 50, 8);  // 5 agents, 50x50 grid, 8 oscillators
eco.crystallize();

for (let i = 0; i < 100; i++) {
  eco.step();
}

console.log(eco.summaryJson());

ruvector-nervous-system-wasm

Bio-inspired neural system components for browser execution.

Component Performance Description
BTSP Immediate Behavioral Timescale Synaptic Plasticity for one-shot learning
HDC <50ns bind, <100ns similarity Hyperdimensional Computing with 10,000-bit vectors
WTA <1us Winner-Take-All for instant decisions
K-WTA <10us K-Winner-Take-All for sparse distributed coding
Global Workspace <10us 4-7 item attention bottleneck (Miller's Law)

Hyperdimensional Computing:

  • 10,000-bit binary hypervectors
  • 10^40 representational capacity
  • XOR binding (associative, commutative, self-inverse)
  • Hamming distance similarity with SIMD optimization

Biological References:

  • BTSP: Bittner et al. 2017 - Hippocampal place fields
  • HDC: Kanerva 1988, Plate 2003 - Hyperdimensional computing
  • WTA: Cortical microcircuits - Lateral inhibition
  • Global Workspace: Baars 1988, Dehaene 2014 - Consciousness

JavaScript/TypeScript Example:

import init, {
  BTSPLayer,
  Hypervector,
  HdcMemory,
  WTALayer,
  KWTALayer,
  GlobalWorkspace,
  WorkspaceItem,
} from '@ruvector/nervous-system-wasm';

await init();

// One-shot learning with BTSP
const btsp = new BTSPLayer(100, 2000.0);  // 100 dim, 2000ms tau
const pattern = new Float32Array(100).fill(0.1);
btsp.one_shot_associate(pattern, 1.0);  // Immediate association
const output = btsp.forward(pattern);

// Hyperdimensional Computing
const apple = Hypervector.random();
const orange = Hypervector.random();
const fruit = apple.bind(orange);  // XOR binding

const similarity = apple.similarity(orange);  // ~0.0 (orthogonal)
console.log(`Similarity: ${similarity}`);  // Random vectors are orthogonal

// HDC Memory
const memory = new HdcMemory();
memory.store("apple", apple);
memory.store("orange", orange);

const results = memory.retrieve(apple, 0.9);  // threshold 0.9
const topK = memory.top_k(fruit, 3);  // top-3 similar

// Instant decisions with WTA
const wta = new WTALayer(1000, 0.5, 0.8);  // 1000 neurons, threshold, inhibition
const activations = new Float32Array(1000);
// ... fill activations ...
const winner = wta.compete(activations);

// Sparse coding with K-WTA
const kwta = new KWTALayer(1000, 50);  // 1000 neurons, k=50 winners
const winners = kwta.select(activations);

// Attention bottleneck with Global Workspace
const workspace = new GlobalWorkspace(7);  // Miller's Law: 7 +/- 2
const item = new WorkspaceItem(
  new Float32Array([1, 2, 3]),  // content
  0.9,  // salience
  1,    // source
  Date.now()  // timestamp
);
workspace.broadcast(item);

ruvector-attention-unified-wasm

Unified API for 18+ attention mechanisms across Neural, DAG, Graph, and SSM domains.

A single WASM interface that routes to the appropriate attention implementation based on your data structure and requirements.

Category Mechanisms Best For
Neural Scaled Dot-Product, Multi-Head, Hyperbolic, Linear, Flash, Local-Global, MoE Transformers, sequences
DAG Topological, Causal Cone, Critical Path, MinCut-Gated, Hierarchical Lorentz, Parallel Branch, Temporal BTSP Query DAGs, workflows
Graph GAT, GCN, GraphSAGE GNNs, knowledge graphs
SSM Mamba Long sequences, streaming

Mechanism Selection:

+------------------+     +-------------------+
|   Your Data      | --> | UnifiedAttention  | --> Optimal Mechanism
+------------------+     +-------------------+
                               |
        +----------------------+----------------------+
        |                      |                      |
   +----v----+           +-----v-----+          +-----v----+
   | Neural  |           |    DAG    |          |  Graph   |
   +---------+           +-----------+          +----------+
   | dot_prod|           | topological|         | gat      |
   | multi_hd|           | causal_cone|         | gcn      |
   | flash   |           | mincut_gtd |         | graphsage|
   +---------+           +-----------+          +----------+

JavaScript/TypeScript Example:

import init, {
  UnifiedAttention,
  availableMechanisms,
  getStats,
  softmax,
  temperatureSoftmax,
  cosineSimilarity,
  // Neural attention
  ScaledDotProductAttention,
  MultiHeadAttention,
  // DAG attention
  TopologicalAttention,
  MinCutGatedAttention,
  // Graph attention
  GraphAttention,
  // SSM
  MambaSSM,
} from '@ruvector/attention-unified-wasm';

await init();

// List all available mechanisms
console.log(availableMechanisms());
// { neural: [...], dag: [...], graph: [...], ssm: [...] }

console.log(getStats());
// { total_mechanisms: 18, neural_count: 7, dag_count: 7, ... }

// Unified selector - routes to appropriate implementation
const attention = new UnifiedAttention("multi_head");
console.log(`Category: ${attention.category}`);  // "neural"
console.log(`Supports sequences: ${attention.supportsSequences()}`);  // true
console.log(`Supports graphs: ${attention.supportsGraphs()}`);  // false

// For DAG structures
const dagAttention = new UnifiedAttention("topological");
console.log(`Category: ${dagAttention.category}`);  // "dag"
console.log(`Supports graphs: ${dagAttention.supportsGraphs()}`);  // true

// Hyperbolic attention for hierarchical data
const hypAttention = new UnifiedAttention("hierarchical_lorentz");
console.log(`Supports hyperbolic: ${hypAttention.supportsHyperbolic()}`);  // true

// Utility functions
const logits = [1.0, 2.0, 3.0, 4.0];
const probs = softmax(logits);
console.log(`Probabilities sum to: ${probs.reduce((a, b) => a + b)}`);  // 1.0

// Temperature-scaled softmax (lower = more peaked)
const sharperProbs = temperatureSoftmax(logits, 0.5);

// Cosine similarity
const vecA = [1.0, 0.0, 0.0];
const vecB = [1.0, 0.0, 0.0];
console.log(`Similarity: ${cosineSimilarity(vecA, vecB)}`);  // 1.0

WASM Package Summary

Package Size Target Key Features
@ruvector/learning-wasm <50KB MicroLoRA (<100us), trajectory tracking
@ruvector/economy-wasm <100KB CRDT ledger, 10x->1x curve, stake/slash
@ruvector/exotic-wasm <150KB NAO, Morphogenetic, Time Crystal
@ruvector/nervous-system-wasm <100KB BTSP, HDC (10K-bit), WTA, Global Workspace
@ruvector/attention-unified-wasm <200KB 18+ attention mechanisms, unified API

Common Patterns:

// All packages follow the same initialization pattern
import init, { /* exports */ } from '@ruvector/<package>-wasm';
await init();

// Version check
import { version } from '@ruvector/<package>-wasm';
console.log(`Version: ${version()}`);

// Feature discovery
import { available_mechanisms } from '@ruvector/<package>-wasm';
console.log(available_mechanisms());

Self-Learning Systems

🧠 Self-Learning Intelligence Hooks

Make your AI assistant smarter over time.

When you use Claude Code (or any AI coding assistant), it starts fresh every session. It doesn't remember which approaches worked, which files you typically edit together, or what errors you've seen before.

RuVector Hooks fixes this. It's a lightweight intelligence layer that:

  1. Remembers what works β€” Tracks which agent types succeed for different tasks
  2. Learns from mistakes β€” Records error patterns and suggests fixes you've used before
  3. Predicts your workflow β€” Knows that after editing api.rs, you usually edit api_test.rs
  4. Coordinates teams β€” Manages multi-agent swarms for complex tasks

Think of it as giving your AI assistant a memory and intuition about your codebase.

How It Works

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Claude Code    │────▢│  RuVector Hooks  │────▢│   Intelligence  β”‚
β”‚  (PreToolUse)   β”‚     β”‚   (pre-edit)     β”‚     β”‚      Layer      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                         β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Q-Learning    β”‚     β”‚  Vector Memory   β”‚     β”‚  Swarm Graph    β”‚
β”‚   Ξ±=0.1 Ξ³=0.95  β”‚     β”‚  64-dim embed    β”‚     β”‚  Coordination   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

The hooks integrate with Claude Code's event system:

  • PreToolUse β†’ Provides guidance before edits (agent routing, related files)
  • PostToolUse β†’ Records outcomes for learning (success/failure, patterns)
  • SessionStart/Stop β†’ Manages session state and metrics export

Technical Specifications

Component Implementation Details
Q-Learning Temporal Difference Ξ±=0.1, Ξ³=0.95, Ξ΅=0.1 (Ξ΅-greedy exploration)
Embeddings Hash-based vectors 64 dimensions, normalized, cosine similarity
LRU Cache lru crate 1000 entries, ~10x faster Q-value lookups
Compression flate2 gzip 70-83% storage reduction, fast compression
Storage JSON / PostgreSQL Auto-fallback, 5000 memory entry limit
Cross-platform Rust + TypeScript Windows (USERPROFILE), Unix (HOME)

Performance

Metric Value
Q-value lookup (cached) <1Β΅s
Q-value lookup (uncached) ~50Β΅s
Memory search (1000 entries) <5ms
Storage compression ratio 70-83%
Session start overhead <10ms
Crate/Package Description Status
ruvector-cli hooks Rust CLI with 34 hooks commands crates.io
@ruvector/cli hooks npm CLI with 29 hooks commands npm

Quick Start

# Rust CLI
cargo install ruvector-cli
ruvector hooks init
ruvector hooks install

# npm CLI
npx @ruvector/cli hooks init
npx @ruvector/cli hooks install

Core Capabilities

Feature Description Technical Details
Q-Learning Routing Routes tasks to best agent with learned confidence scores TD learning with Ξ±=0.1, Ξ³=0.95, Ξ΅-greedy exploration
Semantic Memory Vector-based memory with embeddings for context retrieval 64-dim hash embeddings, cosine similarity, top-k search
Error Learning Records error patterns and suggests fixes Pattern matching for E0308, E0433, TS2322, etc.
File Sequences Predicts next files to edit based on historical patterns Markov chain transitions, frequency-weighted suggestions
Swarm Coordination Registers agents, tracks coordination edges, optimizes Graph-based topology, weighted edges, task assignment
LRU Cache 1000-entry cache for faster Q-value lookups ~10x speedup, automatic eviction, RefCell for interior mutability
Gzip Compression Storage savings with automatic compression flate2 fast mode, 70-83% reduction, transparent load/save
Batch Saves Dirty flag tracking to reduce disk I/O Only writes when data changes, force_save() override
Shell Completions Tab completion for all commands bash, zsh, fish, PowerShell support

Supported Error Codes

The intelligence layer has built-in knowledge for common error patterns:

Language Error Codes Auto-Suggested Fixes
Rust E0308, E0433, E0425, E0277, E0382 Type mismatches, missing imports, borrow checker
TypeScript TS2322, TS2339, TS2345, TS7006 Type assignments, property access, argument types
Python ImportError, AttributeError, TypeError Module imports, attribute access, type errors
Go undefined, cannot use, not enough arguments Variable scope, type conversion, function calls

Commands Reference

# Setup
ruvector hooks init [--force] [--postgres]  # Initialize hooks (--postgres for DB schema)
ruvector hooks install                   # Install into Claude settings

# Core
ruvector hooks stats                     # Show intelligence statistics
ruvector hooks session-start [--resume]  # Start/resume a session
ruvector hooks session-end               # End session with metrics

# Memory
ruvector hooks remember -t edit "content"  # Store in semantic memory
ruvector hooks recall "query" -k 5         # Search memory semantically

# Learning
ruvector hooks learn <state> <action> --reward 0.8  # Record trajectory
ruvector hooks suggest <state> --actions "a,b,c"    # Get action suggestion
ruvector hooks route "implement caching" --file src/cache.rs  # Route to agent

# Claude Code Hooks
ruvector hooks pre-edit <file>           # Pre-edit intelligence hook
ruvector hooks post-edit <file> --success  # Post-edit learning hook
ruvector hooks pre-command <cmd>         # Pre-command hook
ruvector hooks post-command <cmd> --success  # Post-command hook
ruvector hooks suggest-context           # UserPromptSubmit context injection
ruvector hooks track-notification        # Track notification patterns
ruvector hooks pre-compact [--auto]      # Pre-compact hook (auto/manual)

# Claude Code v2.0.55+ Features
ruvector hooks lsp-diagnostic --file <f> --severity error  # LSP diagnostics
ruvector hooks suggest-ultrathink "complex task"  # Recommend extended reasoning
ruvector hooks async-agent --action spawn --agent-id <id>  # Async sub-agents

# Intelligence
ruvector hooks record-error <cmd> <stderr>  # Record error pattern
ruvector hooks suggest-fix E0308           # Get fix for error code
ruvector hooks suggest-next <file> -n 3    # Predict next files
ruvector hooks should-test <file>          # Check if tests needed

# Swarm
ruvector hooks swarm-register <id> <type>  # Register agent
ruvector hooks swarm-coordinate <src> <tgt>  # Record coordination
ruvector hooks swarm-optimize "task1,task2"  # Optimize distribution
ruvector hooks swarm-recommend "rust"      # Recommend agent for task
ruvector hooks swarm-heal <agent-id>       # Handle agent failure
ruvector hooks swarm-stats                 # Show swarm statistics

# Optimization (Rust only)
ruvector hooks compress                   # Compress storage (70-83% savings)
ruvector hooks cache-stats                # Show LRU cache statistics
ruvector hooks completions bash           # Generate shell completions

Tutorial: Claude Code Integration

1. Initialize and install hooks:

ruvector hooks init
ruvector hooks install --settings-dir .claude

This creates .claude/settings.json with hook configurations:

{
  "hooks": {
    "PreToolUse": [
      { "matcher": "Edit|Write|MultiEdit", "hooks": ["ruvector hooks pre-edit \"$TOOL_INPUT_FILE_PATH\""] },
      { "matcher": "Bash", "hooks": ["ruvector hooks pre-command \"$TOOL_INPUT_COMMAND\""] }
    ],
    "PostToolUse": [
      { "matcher": "Edit|Write|MultiEdit", "hooks": ["ruvector hooks post-edit ... --success"] },
      { "matcher": "Bash", "hooks": ["ruvector hooks post-command ... --success"] }
    ],
    "SessionStart": ["ruvector hooks session-start"],
    "Stop": ["ruvector hooks session-end --export-metrics"],
    "PreCompact": ["ruvector hooks pre-compact"]
  }
}

All 7 Claude Code hooks covered:

Hook When It Fires What RuVector Does
PreToolUse Before file edit, command, or Task Suggests agent, shows related files, validates agent assignments
PostToolUse After file edit or command Records outcome, updates Q-values, injects context
SessionStart When session begins/resumes Loads intelligence, shows stats (startup vs resume)
Stop When session ends Saves state, exports metrics
PreCompact Before context compaction Preserves critical memories (auto vs manual)
UserPromptSubmit Before processing user prompt Injects learned patterns as context
Notification On system notifications Tracks notification patterns

Advanced Features:

  • Stdin JSON Parsing: Hooks receive full JSON via stdin (session_id, tool_input, tool_response)
  • Context Injection: PostToolUse returns additionalContext to inject into Claude's context
  • Timeout Optimization: All hooks have optimized timeouts (1-5 seconds vs 60s default)

2. Use routing for intelligent agent selection:

# Route a task to the best agent
$ ruvector hooks route "implement vector search" --file src/lib.rs
{
  "recommended": "rust-developer",
  "confidence": 0.85,
  "reasoning": "learned from 47 similar edits"
}

3. Learn from outcomes:

# Record successful outcome
ruvector hooks learn "edit-rs-lib" "rust-developer" --reward 1.0

# Record failed outcome
ruvector hooks learn "edit-rs-lib" "typescript-dev" --reward -0.5

4. Get error fix suggestions:

$ ruvector hooks suggest-fix E0308
{
  "code": "E0308",
  "type": "type_mismatch",
  "fixes": [
    "Check return type matches function signature",
    "Use .into() or .as_ref() for type conversion",
    "Verify generic type parameters"
  ]
}

Tutorial: Swarm Coordination

1. Register agents:

ruvector hooks swarm-register agent-1 rust-developer --capabilities "rust,async,testing"
ruvector hooks swarm-register agent-2 typescript-dev --capabilities "ts,react,node"
ruvector hooks swarm-register agent-3 reviewer --capabilities "review,security,performance"

2. Record coordination patterns:

# Agent-1 hands off to Agent-3 for review
ruvector hooks swarm-coordinate agent-1 agent-3 --weight 0.9

3. Optimize task distribution:

$ ruvector hooks swarm-optimize "implement-api,write-tests,code-review"
{
  "assignments": {
    "implement-api": "agent-1",
    "write-tests": "agent-1",
    "code-review": "agent-3"
  }
}

4. Handle failures with self-healing:

# Mark agent as failed and redistribute
ruvector hooks swarm-heal agent-2

PostgreSQL Storage (Optional)

For production deployments, use PostgreSQL instead of JSON files:

# Set connection URL
export RUVECTOR_POSTGRES_URL="postgres://user:pass@localhost/ruvector"

# Initialize PostgreSQL schema (automatic)
ruvector hooks init --postgres

# Or apply schema manually
psql $RUVECTOR_POSTGRES_URL -f crates/ruvector-cli/sql/hooks_schema.sql

# Build CLI with postgres feature
cargo build -p ruvector-cli --features postgres

The PostgreSQL backend provides:

  • Vector embeddings with native ruvector type
  • Q-learning functions (ruvector_hooks_update_q, ruvector_hooks_best_action)
  • Swarm coordination tables with foreign key relationships
  • Automatic memory cleanup (keeps last 5000 entries)

Additional Modules

πŸ”¬ Scientific OCR (SciPix)
Package Description Install
ruvector-scipix Rust OCR engine for scientific documents cargo add ruvector-scipix
@ruvector/scipix TypeScript client for SciPix API npm install @ruvector/scipix

SciPix extracts text and mathematical equations from images, converting them to LaTeX, MathML, or plain text.

Features:

  • Multi-format output β€” LaTeX, MathML, AsciiMath, plain text, structured JSON
  • Batch processing β€” Process multiple images with parallel execution
  • Content detection β€” Equations, tables, diagrams, mixed content
  • Confidence scoring β€” Per-region confidence levels (high/medium/low)
  • PDF support β€” Extract from multi-page PDFs with page selection
import { SciPixClient, OutputFormat } from '@ruvector/scipix';

const client = new SciPixClient({
  baseUrl: 'http://localhost:8080',
  apiKey: 'your-api-key',
});

// OCR an image file
const result = await client.ocrFile('./equation.png', {
  formats: [OutputFormat.LaTeX, OutputFormat.MathML],
  detectEquations: true,
});

console.log('LaTeX:', result.latex);
console.log('Confidence:', result.confidence);

// Quick LaTeX extraction
const latex = await client.extractLatex('./math.png');

// Batch processing
const batchResult = await client.batchOcr({
  images: [
    { source: 'base64...', id: 'eq1' },
    { source: 'base64...', id: 'eq2' },
  ],
  defaultOptions: { formats: [OutputFormat.LaTeX] },
});
# Rust CLI usage
scipix-cli ocr --input equation.png --format latex
scipix-cli serve --port 3000

# MCP server for Claude/AI assistants
scipix-cli mcp
claude mcp add scipix -- scipix-cli mcp

See npm/packages/scipix/README.md for full documentation.

πŸ”— ONNX Embeddings
Example Description Path
ruvector-onnx-embeddings Production-ready ONNX embedding generation in pure Rust examples/onnx-embeddings

ONNX Embeddings provides native embedding generation using ONNX Runtime β€” no Python required. Supports 8+ pretrained models (all-MiniLM, BGE, E5, GTE), multiple pooling strategies, GPU acceleration (CUDA, TensorRT, CoreML, WebGPU), and direct RuVector index integration for RAG pipelines.

use ruvector_onnx_embeddings::{Embedder, PretrainedModel};

#[tokio::main]
async fn main() -> anyhow::Result<()> {
    // Create embedder with default model (all-MiniLM-L6-v2)
    let mut embedder = Embedder::default_model().await?;

    // Generate embedding (384 dimensions)
    let embedding = embedder.embed_one("Hello, world!")?;

    // Compute semantic similarity
    let sim = embedder.similarity(
        "I love programming in Rust",
        "Rust is my favorite language"
    )?;
    println!("Similarity: {:.4}", sim); // ~0.85

    Ok(())
}

Supported Models:

Model Dimension Speed Best For
AllMiniLmL6V2 384 Fast General purpose (default)
BgeSmallEnV15 384 Fast Search & retrieval
AllMpnetBaseV2 768 Accurate Production RAG
πŸ”§ Bindings & Tools

Native bindings and tools for integrating RuVector into any environment β€” Node.js, browsers, CLI, or as an HTTP/gRPC server.

Crate Description crates.io
ruvector-node Native Node.js bindings via napi-rs crates.io
ruvector-wasm WASM bindings for browsers & edge crates.io
ruvllm-wasm Browser LLM inference with WebGPU crates.io
ruvector-cli Command-line interface crates.io
ruvector-server HTTP/gRPC server crates.io

Node.js (Native Performance)

npm install @ruvector/node
const { RuVector } = require('@ruvector/node');
const db = new RuVector({ dimensions: 1536 });
db.insert('doc1', embedding, { title: 'Hello' });
const results = db.search(queryEmbedding, 10);

Browser (WASM)

npm install @ruvector/wasm
import { RuVectorWasm } from '@ruvector/wasm';
const db = await RuVectorWasm.create({ dimensions: 384 });
await db.insert('doc1', embedding);
const results = await db.search(query, 5);

CLI

cargo install ruvector-cli
ruvector init mydb --dim 1536
ruvector insert mydb --file embeddings.json
ruvector search mydb --query "[0.1, 0.2, ...]" --limit 10

HTTP Server

cargo install ruvector-server
ruvector-server --port 8080 --data ./vectors

# REST API
curl -X POST http://localhost:8080/search \
  -H "Content-Type: application/json" \
  -d '{"vector": [0.1, 0.2, ...], "limit": 10}'

Examples & Tutorials

πŸ“š Production Examples

28 production-ready examples demonstrating RuVector integration patterns.

Example Description Type
agentic-jujutsu Quantum-resistant version control for AI agents (23x faster than Git) Rust
mincut 6 self-organizing network demos: strange loops, time crystals, causal discovery Rust
subpolynomial-time n^0.12 subpolynomial algorithm demos Rust
exo-ai-2025 Cognitive substrate with 9 neural-symbolic crates + 11 research experiments Rust/TS
neural-trader AI trading with DRL + sentiment analysis + SONA learning Rust
ultra-low-latency-sim 13+ quadrillion meta-simulations/sec with SIMD Rust
meta-cognition-spiking-neural-network Spiking neural network with meta-cognitive learning (10-50x speedup) npm
spiking-network Biologically-inspired spiking neural networks Rust
ruvLLM LLM integration patterns for RAG and AI agents Rust
onnx-embeddings Production ONNX embedding generation without Python Rust
onnx-embeddings-wasm WASM ONNX embeddings for browsers WASM
refrag-pipeline RAG pipeline with vector search and document processing Rust
scipix Scientific OCR: equations β†’ LaTeX/MathML with ONNX inference Rust
graph Graph database examples with Cypher queries Rust
edge 364KB WASM edge deployment Rust
edge-full Full-featured edge vector DB Rust
edge-net Networked edge deployment with zero-cost swarms Rust
vibecast-7sense 7-sense perception AI application TypeScript
apify 13 Apify actors: trading, memory engine, synth data, market research npm
google-cloud GCP templates for Cloud Run, GKE, Vertex AI Terraform
wasm-react React integration with WASM vector operations WASM
wasm-vanilla Vanilla JS WASM example for browser vector search WASM
wasm Core WASM examples and bindings WASM
nodejs Node.js integration examples Node.js
rust Core Rust usage examples Rust
πŸŽ“ Tutorials

Tutorial 1: Vector Search in 60 Seconds

import { VectorDB } from 'ruvector';

// Create DB with 384-dimensional vectors
const db = new VectorDB(384);

// Add vectors
db.insert('doc1', [0.1, 0.2, ...]);  // 384 floats
db.insert('doc2', [0.3, 0.1, ...]);

// Search (returns top 5 nearest neighbors)
const results = db.search(queryVector, 5);
// -> [{ id: 'doc1', score: 0.95 }, { id: 'doc2', score: 0.87 }]

Tutorial 2: Graph Queries with Cypher

import { GraphDB } from 'ruvector';

const graph = new GraphDB();

// Create nodes and relationships
graph.query(`
  CREATE (a:Person {name: 'Alice', embedding: $emb1})
  CREATE (b:Person {name: 'Bob', embedding: $emb2})
  CREATE (a)-[:KNOWS {since: 2020}]->(b)
`, { emb1: aliceVector, emb2: bobVector });

// Hybrid query: graph traversal + vector similarity
const results = graph.query(`
  MATCH (p:Person)-[:KNOWS*1..3]->(friend)
  WHERE vector.similarity(friend.embedding, $query) > 0.8
  RETURN friend.name, vector.similarity(friend.embedding, $query) as score
  ORDER BY score DESC
`, { query: queryVector });

Tutorial 3: Self-Learning with SONA

use ruvector_sona::{SonaEngine, SonaConfig};

// Initialize SONA with LoRA adapters
let sona = SonaEngine::with_config(SonaConfig {
    hidden_dim: 256,
    lora_rank: 8,
    ewc_lambda: 0.4,  // Elastic Weight Consolidation
    ..Default::default()
});

// Record successful action
let mut trajectory = sona.begin_trajectory(query_embedding);
trajectory.add_step(result_embedding, vec![], 1.0);  // reward=1.0
sona.end_trajectory(trajectory, true);  // success=true

// SONA learns and improves future predictions
sona.force_learn();

// Later: get improved predictions
let prediction = sona.predict(&new_query_embedding);

Tutorial 4: Dynamic Min-Cut (n^0.12 Updates)

use ruvector_mincut::{DynamicMinCut, Graph};

// Build graph
let mut graph = Graph::new(100);  // 100 nodes
graph.add_edge(0, 1, 10.0);
graph.add_edge(1, 2, 5.0);
graph.add_edge(0, 2, 15.0);

// Compute initial min-cut
let mut mincut = DynamicMinCut::new(&graph);
let (value, cut_edges) = mincut.compute();
println!("Min-cut value: {}", value);  // -> 15.0

// Dynamic update - subpolynomial time O(n^0.12)!
graph.update_edge(1, 2, 20.0);
let (new_value, _) = mincut.recompute();  // Much faster than recomputing from scratch

Tutorial 5: 39 Attention Mechanisms

use ruvector_attention::{
    Attention, FlashAttention, LinearAttention,
    HyperbolicAttention, GraphAttention, MinCutGatedAttention
};

// FlashAttention - O(n) memory, fastest for long sequences
let flash = FlashAttention::new(512, 8);  // dim=512, heads=8
let output = flash.forward(&query, &key, &value);

// LinearAttention - O(n) time complexity
let linear = LinearAttention::new(512, 8);

// HyperbolicAttention - for hierarchical data (PoincarΓ© ball)
let hyper = HyperbolicAttention::new(512, 8, Curvature(-1.0));

// GraphAttention - respects graph structure
let gat = GraphAttention::new(512, 8, &adjacency_matrix);

// MinCutGatedAttention - 50% compute reduction via sparsity
let mincut_gated = MinCutGatedAttention::new(512, 8, sparsity: 0.5);
let sparse_output = mincut_gated.forward(&query, &key, &value);

Tutorial 6: Spiking Neural Networks

import { SpikingNetwork, HDCEncoder } from '@ruvector/spiking-neural';

// High-Dimensional Computing encoder (10K-bit vectors)
const encoder = new HDCEncoder(10000);
const encoded = encoder.encode("hello world");

// Spiking network with BTSP learning
const network = new SpikingNetwork({
  layers: [784, 256, 10],
  learning: 'btsp',  // Behavioral Time-Scale Plasticity
  threshold: 1.0
});

// Train with spike timing
network.train(spikes, labels, { epochs: 10 });

// Inference
const output = network.forward(inputSpikes);

Tutorial 7: Claude Code Hooks Integration

# 1. Initialize hooks
npx @ruvector/cli hooks init

# 2. Install into Claude settings
npx @ruvector/cli hooks install

# 3. Hooks now capture:
#    - File edits (pre/post)
#    - Commands (pre/post)
#    - Sessions (start/end)
#    - Errors and fixes

# 4. Query learned patterns
npx @ruvector/cli hooks recall "authentication error"
# -> Returns similar past solutions

# 5. Get AI routing suggestions
npx @ruvector/cli hooks route "implement caching"
# -> Suggests: rust-developer (confidence: 0.89)

Tutorial 8: Edge Deployment with rvLite

import { RvLite } from '@ruvector/rvlite';

// Create persistent edge database (IndexedDB in browser)
const db = await RvLite.create({
  path: 'my-vectors.db',
  dimensions: 384
});

// Works offline - all computation local
await db.insert('doc1', embedding1, { title: 'Hello' });
await db.insert('doc2', embedding2, { title: 'World' });

// Semantic search with metadata filtering
const results = await db.search(queryEmbedding, {
  limit: 10,
  filter: { title: { $contains: 'Hello' } }
});

// Sync when online
await db.sync('https://api.example.com/vectors');
πŸ• WASM & Utility Packages
Package Description Version Downloads
@ruvector/wasm WASM core vector DB npm downloads
@ruvector/gnn-wasm WASM GNN layers npm downloads
@ruvector/graph-wasm WASM graph DB npm downloads
@ruvector/attention-wasm WASM attention npm downloads
@ruvector/tiny-dancer-wasm WASM AI routing npm downloads
@ruvector/router-wasm WASM semantic router npm downloads
@ruvector/postgres-cli Postgres extension CLI npm downloads
@ruvector/agentic-synth Synthetic data generator npm downloads
@ruvector/graph-data-generator Graph data generation npm downloads
@ruvector/agentic-integration Agentic workflows npm downloads
rvlite SQLite-style edge DB (SQL/SPARQL/Cypher) npm downloads

Platform-specific native bindings (auto-detected):

  • @ruvector/node-linux-x64-gnu, @ruvector/node-linux-arm64-gnu, @ruvector/node-darwin-x64, @ruvector/node-darwin-arm64, @ruvector/node-win32-x64-msvc
  • @ruvector/gnn-linux-x64-gnu, @ruvector/gnn-linux-arm64-gnu, @ruvector/gnn-darwin-x64, @ruvector/gnn-darwin-arm64, @ruvector/gnn-win32-x64-msvc
  • @ruvector/tiny-dancer-linux-x64-gnu, @ruvector/tiny-dancer-linux-arm64-gnu, @ruvector/tiny-dancer-darwin-x64, @ruvector/tiny-dancer-darwin-arm64, @ruvector/tiny-dancer-win32-x64-msvc
  • @ruvector/router-linux-x64-gnu, @ruvector/router-linux-arm64-gnu, @ruvector/router-darwin-x64, @ruvector/router-darwin-arm64, @ruvector/router-win32-x64-msvc
  • @ruvector/attention-linux-x64-gnu, @ruvector/attention-linux-arm64-gnu, @ruvector/attention-darwin-x64, @ruvector/attention-darwin-arm64, @ruvector/attention-win32-x64-msvc
  • @ruvector/ruvllm-linux-x64-gnu, @ruvector/ruvllm-linux-arm64-gnu, @ruvector/ruvllm-darwin-x64, @ruvector/ruvllm-darwin-arm64, @ruvector/ruvllm-win32-x64-msvc

See GitHub Issue #20 for multi-platform npm package roadmap.

# Install all-in-one package
npm install ruvector

# Or install individual packages
npm install @ruvector/core @ruvector/gnn @ruvector/graph-node

# List all available packages
npx ruvector install
const ruvector = require('ruvector');

// Vector search
const db = new ruvector.VectorDB(128);
db.insert('doc1', embedding1);
const results = db.search(queryEmbedding, 10);

// Graph queries (Cypher)
db.execute("CREATE (a:Person {name: 'Alice'})-[:KNOWS]->(b:Person {name: 'Bob'})");
db.execute("MATCH (p:Person)-[:KNOWS]->(friend) RETURN friend.name");

// GNN-enhanced search
const layer = new ruvector.GNNLayer(128, 256, 4);
const enhanced = layer.forward(query, neighbors, weights);

// Compression (2-32x memory savings)
const compressed = ruvector.compress(embedding, 0.3);

// Tiny Dancer: AI agent routing
const router = new ruvector.Router();
const decision = router.route(candidates, { optimize: 'cost' });
πŸ¦€ Rust Usage Examples
cargo add ruvector-graph ruvector-gnn
use ruvector_graph::{GraphDB, NodeBuilder};
use ruvector_gnn::{RuvectorLayer, differentiable_search};

let db = GraphDB::new();

let doc = NodeBuilder::new("doc1")
    .label("Document")
    .property("embedding", vec![0.1, 0.2, 0.3])
    .build();
db.create_node(doc)?;

// GNN layer
let layer = RuvectorLayer::new(128, 256, 4, 0.1);
let enhanced = layer.forward(&query, &neighbors, &weights);
use ruvector_raft::{RaftNode, RaftNodeConfig};
use ruvector_cluster::{ClusterManager, ConsistentHashRing};
use ruvector_replication::{SyncManager, SyncMode};

// Configure a 5-node Raft cluster
let config = RaftNodeConfig {
    node_id: "node-1".into(),
    cluster_members: vec!["node-1", "node-2", "node-3", "node-4", "node-5"]
        .into_iter().map(Into::into).collect(),
    election_timeout_min: 150,  // ms
    election_timeout_max: 300,  // ms
    heartbeat_interval: 50,     // ms
};
let raft = RaftNode::new(config);

// Auto-sharding with consistent hashing (150 virtual nodes per real node)
let ring = ConsistentHashRing::new(64, 3); // 64 shards, replication factor 3
let shard = ring.get_shard("my-vector-key");

// Multi-master replication with conflict resolution
let sync = SyncManager::new(SyncMode::SemiSync { min_replicas: 2 });
πŸŽ“ RuvLLM Training & RLM Fine-Tuning Tutorials

Hybrid Routing (90% Accuracy)

RuvLTRA achieves 90% routing accuracy using a keyword-first strategy with embedding fallback:

// Optimal routing: Keywords first, embeddings as tiebreaker
function routeTask(task, taskEmbedding, agentEmbeddings) {
  const keywordScores = getKeywordScores(task);
  const maxKw = Math.max(...Object.values(keywordScores));

  if (maxKw > 0) {
    const candidates = Object.entries(keywordScores)
      .filter(([_, score]) => score === maxKw)
      .map(([agent]) => agent);

    if (candidates.length === 1) return { agent: candidates[0] };
    return pickByEmbedding(candidates, taskEmbedding, agentEmbeddings);
  }

  return embeddingSimilarity(taskEmbedding, agentEmbeddings);
}

Run the benchmark: node npm/packages/ruvllm/scripts/hybrid-model-compare.js

Generate Training Data

# Using CLI (recommended)
npx @ruvector/ruvllm train stats              # View dataset statistics
npx @ruvector/ruvllm train dataset            # Export training data
npx @ruvector/ruvllm train contrastive        # Run full training pipeline

# With options
npx @ruvector/ruvllm train dataset --output ./my-training
npx @ruvector/ruvllm train contrastive --epochs 20 --batch-size 32 --lr 0.0001

Programmatic API:

import { ContrastiveTrainer, generateTrainingDataset, getDatasetStats } from '@ruvector/ruvllm';

const stats = getDatasetStats();
console.log(`${stats.totalExamples} examples, ${stats.agentTypes} agent types`);

const trainer = new ContrastiveTrainer({ epochs: 10, margin: 0.5 });
trainer.addTriplet(anchor, anchorEmb, positive, positiveEmb, negative, negativeEmb, true);
const result = trainer.train();
trainer.exportTrainingData('./output');

Fine-Tune with LoRA

pip install transformers peft datasets accelerate

python -m peft.lora_train \
  --model_name Qwen/Qwen2.5-0.5B-Instruct \
  --dataset ./data/training/routing-examples.jsonl \
  --output_dir ./ruvltra-routing-lora \
  --lora_r 8 --lora_alpha 16 \
  --num_train_epochs 3 \
  --learning_rate 2e-4

Convert to GGUF

# Merge LoRA weights
python -c "
from peft import PeftModel
from transformers import AutoModelForCausalLM
base = AutoModelForCausalLM.from_pretrained('Qwen/Qwen2.5-0.5B-Instruct')
model = PeftModel.from_pretrained(base, './ruvltra-routing-lora')
model.merge_and_unload().save_pretrained('./ruvltra-routing-merged')
"

# Convert and quantize
python llama.cpp/convert_hf_to_gguf.py ./ruvltra-routing-merged --outfile ruvltra-routing-f16.gguf
./llama.cpp/llama-quantize ruvltra-routing-f16.gguf ruvltra-routing-q4_k_m.gguf Q4_K_M

Contrastive Embedding Training

Using RuvLLM CLI (recommended):

# Full contrastive training pipeline with triplet loss
npx @ruvector/ruvllm train contrastive --output ./training-output

# Exports: triplets.jsonl, embeddings.json, lora_config.json, train.sh

Using Python (for GPU training):

from sentence_transformers import SentenceTransformer, losses, InputExample
from torch.utils.data import DataLoader

train_examples = [
    InputExample(texts=["implement login", "build auth component"], label=1.0),
    InputExample(texts=["implement login", "write unit tests"], label=0.0),
]

model = SentenceTransformer("Qwen/Qwen2.5-0.5B-Instruct")
train_loss = losses.CosineSimilarityLoss(model)
model.fit([(DataLoader(train_examples, batch_size=16), train_loss)], epochs=5)

Resources: Issue #122 | LoRA Paper | Sentence Transformers

Rust Training Module

For production-scale dataset generation, use the Rust training module (full docs):

use ruvllm::training::{DatasetGenerator, DatasetConfig};

let config = DatasetConfig {
    examples_per_category: 100,
    enable_augmentation: true,
    seed: 42,
    ..Default::default()
};

let dataset = DatasetGenerator::new(config).generate();
let (train, val, test) = dataset.split(0.7, 0.15, 0.15, 42);
dataset.export_jsonl("training.jsonl")?;

Features:

  • 5 agent categories: Coder, Researcher, Security, Architecture, Reviewer (20% each)
  • Model routing: Haiku (simple) β†’ Sonnet (moderate) β†’ Opus (complex/security)
  • Data augmentation: Paraphrasing, complexity variations, domain transfer
  • 8 technical domains: Web, Systems, DataScience, Mobile, DevOps, Security, Database, API
  • Quality scores: 0.80-0.96 based on template quality and category
  • Performance: ~10,000 examples/second, ~50 MB/s JSONL export
cargo run --example generate_claude_dataset --release
# Outputs: train.jsonl, val.jsonl, test.jsonl, stats.json

Project

πŸ“ Project Structure
crates/
β”œβ”€β”€ ruvector-core/           # Vector DB engine (HNSW, storage)
β”œβ”€β”€ ruvector-graph/          # Graph DB + Cypher parser + Hyperedges
β”œβ”€β”€ ruvector-gnn/            # GNN layers, compression, training
β”œβ”€β”€ ruvector-tiny-dancer-core/  # AI agent routing (FastGRNN)
β”œβ”€β”€ ruvector-*-wasm/         # WebAssembly bindings
└── ruvector-*-node/         # Node.js bindings (napi-rs)

Contributing

We welcome contributions! See CONTRIBUTING.md.

# Run tests
cargo test --workspace

# Run benchmarks
cargo bench --workspace

# Build WASM
cargo build -p ruvector-gnn-wasm --target wasm32-unknown-unknown

License

MIT License β€” free for commercial and personal use.


Built by rUv β€’ GitHub β€’ npm β€’ Docs

Vector search that gets smarter over time.

About

A distributed vector database that learns. Store embeddings, query with Cypher, scale horizontally with Raft consensus, and let the index improve itself through Graph Neural Networks.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •