-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_ogbpcba.py
114 lines (87 loc) · 3.36 KB
/
train_ogbpcba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import torch
from torch.optim import Adam
from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
from torch_geometric.data import DataLoader
from torch_geometric.transforms import Compose
from transform import JunctionTree
from model import Net
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--hidden_channels', type=int, default=300)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--dropout', type=float, default=0.25)
parser.add_argument('--epochs', type=int, default=150)
parser.add_argument('--no_inter_message_passing', action='store_true')
args = parser.parse_args()
print(args)
class OGBTransform(object):
# OGB saves atom and bond types zero-index based. We need to revert that.
def __call__(self, data):
data.x[:, 0] += 1
data.edge_attr[:, 0] += 1
return data
transform = Compose([OGBTransform(), JunctionTree()])
name = 'ogbg-molpcba'
evaluator = Evaluator(name)
dataset = PygGraphPropPredDataset(name, 'data', pre_transform=transform)
split_idx = dataset.get_idx_split()
train_dataset = dataset[split_idx['train']]
val_dataset = dataset[split_idx['valid']]
test_dataset = dataset[split_idx['test']]
train_loader = DataLoader(train_dataset, 256, shuffle=True, num_workers=12)
val_loader = DataLoader(val_dataset, 1000, shuffle=False, num_workers=12)
test_loader = DataLoader(test_dataset, 1000, shuffle=False, num_workers=12)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
model = Net(hidden_channels=args.hidden_channels,
out_channels=dataset.num_tasks, num_layers=args.num_layers,
dropout=args.dropout,
inter_message_passing=not args.no_inter_message_passing).to(device)
def train(epoch):
model.train()
total_loss = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
mask = ~torch.isnan(data.y)
out = model(data)[mask]
y = data.y.to(torch.float)[mask]
loss = torch.nn.BCEWithLogitsLoss()(out, y)
loss.backward()
total_loss += loss.item() * data.num_graphs
optimizer.step()
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def test(loader):
model.eval()
y_preds, y_trues = [], []
for data in loader:
data = data.to(device)
y_preds.append(model(data))
y_trues.append(data.y)
return evaluator.eval({
'y_pred': torch.cat(y_preds, dim=0),
'y_true': torch.cat(y_trues, dim=0),
})[evaluator.eval_metric]
test_perfs = []
for run in range(1, 11):
print()
print(f'Run {run}:')
print()
model.reset_parameters()
optimizer = Adam(model.parameters(), lr=0.001)
best_val_perf = test_perf = 0
for epoch in range(1, args.epochs + 1):
loss = train(epoch)
train_perf = test(train_loader)
val_perf = test(val_loader)
if val_perf > best_val_perf:
best_val_perf = val_perf
test_perf = test(test_loader)
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_perf:.4f}, Val: {val_perf:.4f}, '
f'Test: {test_perf:.4f}')
test_perfs.append(test_perf)
test_perf = torch.tensor(test_perfs)
print('===========================')
print(f'Final Test: {test_perf.mean():.4f} ± {test_perf.std():.4f}')