|
| 1 | +/// Solve least square problem `|b - Ax|` with multi-column `b` |
| 2 | +use approx::AbsDiffEq; |
| 3 | +use ndarray::*; |
| 4 | +use ndarray_linalg::*; |
| 5 | + |
| 6 | +/// A is square. `x = A^{-1} b`, `|b - Ax| = 0` |
| 7 | +fn test_exact<T: Scalar + Lapack>(a: Array2<T>, b: Array2<T>) { |
| 8 | + assert_eq!(a.layout().unwrap().size(), (3, 3)); |
| 9 | + assert_eq!(b.layout().unwrap().size(), (3, 2)); |
| 10 | + |
| 11 | + let result = a.least_squares(&b).unwrap(); |
| 12 | + // unpack result |
| 13 | + let x: Array2<T> = result.solution; |
| 14 | + let residual_l2_square: Array1<T::Real> = result.residual_sum_of_squares.unwrap(); |
| 15 | + |
| 16 | + // must be full-rank |
| 17 | + assert_eq!(result.rank, 3); |
| 18 | + |
| 19 | + // |b - Ax| == 0 |
| 20 | + for &residual in &residual_l2_square { |
| 21 | + assert!(residual < T::real(1.0e-4)); |
| 22 | + } |
| 23 | + |
| 24 | + // b == Ax |
| 25 | + let ax = a.dot(&x); |
| 26 | + assert_close_l2!(&b, &ax, T::real(1.0e-4)); |
| 27 | +} |
| 28 | + |
| 29 | +macro_rules! impl_exact { |
| 30 | + ($scalar:ty) => { |
| 31 | + paste::item! { |
| 32 | + #[test] |
| 33 | + fn [<least_squares_ $scalar _exact_ac_bc>]() { |
| 34 | + let a: Array2<f64> = random((3, 3)); |
| 35 | + let b: Array2<f64> = random((3, 2)); |
| 36 | + test_exact(a, b) |
| 37 | + } |
| 38 | + |
| 39 | + #[test] |
| 40 | + fn [<least_squares_ $scalar _exact_ac_bf>]() { |
| 41 | + let a: Array2<f64> = random((3, 3)); |
| 42 | + let b: Array2<f64> = random((3, 2).f()); |
| 43 | + test_exact(a, b) |
| 44 | + } |
| 45 | + |
| 46 | + #[test] |
| 47 | + fn [<least_squares_ $scalar _exact_af_bc>]() { |
| 48 | + let a: Array2<f64> = random((3, 3).f()); |
| 49 | + let b: Array2<f64> = random((3, 2)); |
| 50 | + test_exact(a, b) |
| 51 | + } |
| 52 | + |
| 53 | + #[test] |
| 54 | + fn [<least_squares_ $scalar _exact_af_bf>]() { |
| 55 | + let a: Array2<f64> = random((3, 3).f()); |
| 56 | + let b: Array2<f64> = random((3, 2).f()); |
| 57 | + test_exact(a, b) |
| 58 | + } |
| 59 | + } |
| 60 | + }; |
| 61 | +} |
| 62 | + |
| 63 | +impl_exact!(f32); |
| 64 | +impl_exact!(f64); |
| 65 | +impl_exact!(c32); |
| 66 | +impl_exact!(c64); |
| 67 | + |
| 68 | +/// #column < #row case. |
| 69 | +/// Linear problem is overdetermined, `|b - Ax| > 0`. |
| 70 | +fn test_overdetermined<T: Scalar + Lapack>(a: Array2<T>, bs: Array2<T>) |
| 71 | +where |
| 72 | + T::Real: AbsDiffEq<Epsilon = T::Real>, |
| 73 | +{ |
| 74 | + assert_eq!(a.layout().unwrap().size(), (4, 3)); |
| 75 | + assert_eq!(bs.layout().unwrap().size(), (4, 2)); |
| 76 | + |
| 77 | + let result = a.least_squares(&bs).unwrap(); |
| 78 | + // unpack result |
| 79 | + let xs = result.solution; |
| 80 | + let residual_l2_square = result.residual_sum_of_squares.unwrap(); |
| 81 | + |
| 82 | + // Must be full-rank |
| 83 | + assert_eq!(result.rank, 3); |
| 84 | + |
| 85 | + for j in 0..2 { |
| 86 | + let b = bs.index_axis(Axis(1), j); |
| 87 | + let x = xs.index_axis(Axis(1), j); |
| 88 | + let residual = &b - &a.dot(&x); |
| 89 | + let residual_l2_sq = residual_l2_square[j]; |
| 90 | + assert!(residual_l2_sq.abs_diff_eq(&residual.norm_l2().powi(2), T::real(1.0e-4))); |
| 91 | + |
| 92 | + // `|residual| < |b|` |
| 93 | + assert!(residual.norm_l2() < b.norm_l2()); |
| 94 | + } |
| 95 | +} |
| 96 | + |
| 97 | +macro_rules! impl_overdetermined { |
| 98 | + ($scalar:ty) => { |
| 99 | + paste::item! { |
| 100 | + #[test] |
| 101 | + fn [<least_squares_ $scalar _overdetermined_ac_bc>]() { |
| 102 | + let a: Array2<f64> = random((4, 3)); |
| 103 | + let b: Array2<f64> = random((4, 2)); |
| 104 | + test_overdetermined(a, b) |
| 105 | + } |
| 106 | + |
| 107 | + #[test] |
| 108 | + fn [<least_squares_ $scalar _overdetermined_af_bc>]() { |
| 109 | + let a: Array2<f64> = random((4, 3).f()); |
| 110 | + let b: Array2<f64> = random((4, 2)); |
| 111 | + test_overdetermined(a, b) |
| 112 | + } |
| 113 | + |
| 114 | + #[test] |
| 115 | + fn [<least_squares_ $scalar _overdetermined_ac_bf>]() { |
| 116 | + let a: Array2<f64> = random((4, 3)); |
| 117 | + let b: Array2<f64> = random((4, 2).f()); |
| 118 | + test_overdetermined(a, b) |
| 119 | + } |
| 120 | + |
| 121 | + #[test] |
| 122 | + fn [<least_squares_ $scalar _overdetermined_af_bf>]() { |
| 123 | + let a: Array2<f64> = random((4, 3).f()); |
| 124 | + let b: Array2<f64> = random((4, 2).f()); |
| 125 | + test_overdetermined(a, b) |
| 126 | + } |
| 127 | + } |
| 128 | + }; |
| 129 | +} |
| 130 | + |
| 131 | +impl_overdetermined!(f32); |
| 132 | +impl_overdetermined!(f64); |
| 133 | +impl_overdetermined!(c32); |
| 134 | +impl_overdetermined!(c64); |
| 135 | + |
| 136 | +/// #column > #row case. |
| 137 | +/// Linear problem is underdetermined, `|b - Ax| = 0` and `x` is not unique |
| 138 | +fn test_underdetermined<T: Scalar + Lapack>(a: Array2<T>, b: Array2<T>) { |
| 139 | + assert_eq!(a.layout().unwrap().size(), (3, 4)); |
| 140 | + assert_eq!(b.layout().unwrap().size(), (3, 2)); |
| 141 | + |
| 142 | + let result = a.least_squares(&b).unwrap(); |
| 143 | + assert_eq!(result.rank, 3); |
| 144 | + assert!(result.residual_sum_of_squares.is_none()); |
| 145 | + |
| 146 | + // b == Ax |
| 147 | + let x = result.solution; |
| 148 | + let ax = a.dot(&x); |
| 149 | + assert_close_l2!(&b, &ax, T::real(1.0e-4)); |
| 150 | +} |
| 151 | + |
| 152 | +macro_rules! impl_underdetermined { |
| 153 | + ($scalar:ty) => { |
| 154 | + paste::item! { |
| 155 | + #[test] |
| 156 | + fn [<least_squares_ $scalar _underdetermined_ac_bc>]() { |
| 157 | + let a: Array2<f64> = random((3, 4)); |
| 158 | + let b: Array2<f64> = random((3, 2)); |
| 159 | + test_underdetermined(a, b) |
| 160 | + } |
| 161 | + |
| 162 | + #[test] |
| 163 | + fn [<least_squares_ $scalar _underdetermined_af_bc>]() { |
| 164 | + let a: Array2<f64> = random((3, 4).f()); |
| 165 | + let b: Array2<f64> = random((3, 2)); |
| 166 | + test_underdetermined(a, b) |
| 167 | + } |
| 168 | + |
| 169 | + #[test] |
| 170 | + fn [<least_squares_ $scalar _underdetermined_ac_bf>]() { |
| 171 | + let a: Array2<f64> = random((3, 4)); |
| 172 | + let b: Array2<f64> = random((3, 2).f()); |
| 173 | + test_underdetermined(a, b) |
| 174 | + } |
| 175 | + |
| 176 | + #[test] |
| 177 | + fn [<least_squares_ $scalar _underdetermined_af_bf>]() { |
| 178 | + let a: Array2<f64> = random((3, 4).f()); |
| 179 | + let b: Array2<f64> = random((3, 2).f()); |
| 180 | + test_underdetermined(a, b) |
| 181 | + } |
| 182 | + } |
| 183 | + }; |
| 184 | +} |
| 185 | + |
| 186 | +impl_underdetermined!(f32); |
| 187 | +impl_underdetermined!(f64); |
| 188 | +impl_underdetermined!(c32); |
| 189 | +impl_underdetermined!(c64); |
0 commit comments