Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix typos in floating-point primitive type docs #129645

Merged
merged 2 commits into from
Aug 27, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 6 additions & 8 deletions library/core/src/primitive_docs.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1130,8 +1130,8 @@ impl<T> (T,) {}
/// A 16-bit floating point type (specifically, the "binary16" type defined in IEEE 754-2008).
///
/// This type is very similar to [`prim@f32`] but has decreased precision because it uses half as many
/// bits. Please see [the documentation for [`prim@f32`] or [Wikipedia on
/// half-precision values][wikipedia] for more information.
/// bits. Please see [the documentation for `f32`](prim@f32) or [Wikipedia on half-precision
/// values][wikipedia] for more information.
///
/// Note that most common platforms will not support `f16` in hardware without enabling extra target
/// features, with the notable exception of Apple Silicon (also known as M1, M2, etc.) processors.
Expand Down Expand Up @@ -1218,14 +1218,12 @@ mod prim_f32 {}
#[doc(alias = "double")]
/// A 64-bit floating point type (specifically, the "binary64" type defined in IEEE 754-2008).
///
/// This type is very similar to [`f32`], but has increased
/// precision by using twice as many bits. Please see [the documentation for
/// `f32`][`f32`] or [Wikipedia on double precision
/// This type is very similar to [`prim@f32`], but has increased precision by using twice as many
/// bits. Please see [the documentation for `f32`](prim@f32) or [Wikipedia on double-precision
/// values][wikipedia] for more information.
///
/// *[See also the `std::f64::consts` module](crate::f64::consts).*
///
/// [`f32`]: prim@f32
/// [wikipedia]: https://en.wikipedia.org/wiki/Double-precision_floating-point_format
#[stable(feature = "rust1", since = "1.0.0")]
mod prim_f64 {}
Expand All @@ -1235,12 +1233,12 @@ mod prim_f64 {}
/// A 128-bit floating point type (specifically, the "binary128" type defined in IEEE 754-2008).
///
/// This type is very similar to [`prim@f32`] and [`prim@f64`], but has increased precision by using twice
/// as many bits as `f64`. Please see [the documentation for [`prim@f32`] or [Wikipedia on
/// as many bits as `f64`. Please see [the documentation for `f32`](prim@f32) or [Wikipedia on
/// quad-precision values][wikipedia] for more information.
///
/// Note that no platforms have hardware support for `f128` without enabling target specific features,
/// as for all instruction set architectures `f128` is considered an optional feature.
/// Only Power ISA ("PowerPC") and RISCV specify it, and only certain microarchitectures
/// Only Power ISA ("PowerPC") and RISC-V specify it, and only certain microarchitectures
/// actually implement it. For x86-64 and AArch64, ISA support is not even specified,
/// so it will always be a software implementation significantly slower than `f64`.
///
Expand Down
Loading