-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathoption.rs
2590 lines (2467 loc) · 82 KB
/
option.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Optional values.
//!
//! Type [`Option`] represents an optional value: every [`Option`]
//! is either [`Some`] and contains a value, or [`None`], and
//! does not. [`Option`] types are very common in Rust code, as
//! they have a number of uses:
//!
//! * Initial values
//! * Return values for functions that are not defined
//! over their entire input range (partial functions)
//! * Return value for otherwise reporting simple errors, where [`None`] is
//! returned on error
//! * Optional struct fields
//! * Struct fields that can be loaned or "taken"
//! * Optional function arguments
//! * Nullable pointers
//! * Swapping things out of difficult situations
//!
//! [`Option`]s are commonly paired with pattern matching to query the presence
//! of a value and take action, always accounting for the [`None`] case.
//!
//! ```
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
//! if denominator == 0.0 {
//! None
//! } else {
//! Some(numerator / denominator)
//! }
//! }
//!
//! // The return value of the function is an option
//! let result = divide(2.0, 3.0);
//!
//! // Pattern match to retrieve the value
//! match result {
//! // The division was valid
//! Some(x) => println!("Result: {x}"),
//! // The division was invalid
//! None => println!("Cannot divide by 0"),
//! }
//! ```
//!
//
// FIXME: Show how `Option` is used in practice, with lots of methods
//
//! # Options and pointers ("nullable" pointers)
//!
//! Rust's pointer types must always point to a valid location; there are
//! no "null" references. Instead, Rust has *optional* pointers, like
//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
//!
//! [Box\<T>]: ../../std/boxed/struct.Box.html
//!
//! The following example uses [`Option`] to create an optional box of
//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
//! `check_optional` function first needs to use pattern matching to
//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
//! not ([`None`]).
//!
//! ```
//! let optional = None;
//! check_optional(optional);
//!
//! let optional = Some(Box::new(9000));
//! check_optional(optional);
//!
//! fn check_optional(optional: Option<Box<i32>>) {
//! match optional {
//! Some(p) => println!("has value {p}"),
//! None => println!("has no value"),
//! }
//! }
//! ```
//!
//! # The question mark operator, `?`
//!
//! Similar to the [`Result`] type, when writing code that calls many functions that return the
//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
//! operator, [`?`], hides some of the boilerplate of propagating values
//! up the call stack.
//!
//! It replaces this:
//!
//! ```
//! # #![allow(dead_code)]
//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
//! let a = stack.pop();
//! let b = stack.pop();
//!
//! match (a, b) {
//! (Some(x), Some(y)) => Some(x + y),
//! _ => None,
//! }
//! }
//!
//! ```
//!
//! With this:
//!
//! ```
//! # #![allow(dead_code)]
//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
//! Some(stack.pop()? + stack.pop()?)
//! }
//! ```
//!
//! *It's much nicer!*
//!
//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
//!
//! [`?`] can be used in functions that return [`Option`] because of the
//! early return of [`None`] that it provides.
//!
//! [`?`]: crate::ops::Try
//! [`Some`]: Some
//! [`None`]: None
//!
//! # Representation
//!
//! Rust guarantees to optimize the following types `T` such that
//! [`Option<T>`] has the same size as `T`:
//!
//! * [`Box<U>`]
//! * `&U`
//! * `&mut U`
//! * `fn`, `extern "C" fn`[^extern_fn]
//! * [`num::NonZero*`]
//! * [`ptr::NonNull<U>`]
//! * `#[repr(transparent)]` struct around one of the types in this list.
//!
//! [^extern_fn]: this remains true for any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
//!
//! [`Box<U>`]: ../../std/boxed/struct.Box.html
//! [`num::NonZero*`]: crate::num
//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
//!
//! This is called the "null pointer optimization" or NPO.
//!
//! It is further guaranteed that, for the cases above, one can
//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
//! is undefined behaviour).
//!
//! # Method overview
//!
//! In addition to working with pattern matching, [`Option`] provides a wide
//! variety of different methods.
//!
//! ## Querying the variant
//!
//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
//! is [`Some`] or [`None`], respectively.
//!
//! [`is_none`]: Option::is_none
//! [`is_some`]: Option::is_some
//!
//! ## Adapters for working with references
//!
//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
//! <code>[Option]<[&]T::[Target]></code>
//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
//! <code>[Option]<[&mut] T::[Target]></code>
//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
//! <code>[Option]<[Pin]<[&]T>></code>
//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
//! <code>[Option]<[Pin]<[&mut] T>></code>
//!
//! [&]: reference "shared reference"
//! [&mut]: reference "mutable reference"
//! [Target]: Deref::Target "ops::Deref::Target"
//! [`as_deref`]: Option::as_deref
//! [`as_deref_mut`]: Option::as_deref_mut
//! [`as_mut`]: Option::as_mut
//! [`as_pin_mut`]: Option::as_pin_mut
//! [`as_pin_ref`]: Option::as_pin_ref
//! [`as_ref`]: Option::as_ref
//!
//! ## Extracting the contained value
//!
//! These methods extract the contained value in an [`Option<T>`] when it
//! is the [`Some`] variant. If the [`Option`] is [`None`]:
//!
//! * [`expect`] panics with a provided custom message
//! * [`unwrap`] panics with a generic message
//! * [`unwrap_or`] returns the provided default value
//! * [`unwrap_or_default`] returns the default value of the type `T`
//! (which must implement the [`Default`] trait)
//! * [`unwrap_or_else`] returns the result of evaluating the provided
//! function
//!
//! [`expect`]: Option::expect
//! [`unwrap`]: Option::unwrap
//! [`unwrap_or`]: Option::unwrap_or
//! [`unwrap_or_default`]: Option::unwrap_or_default
//! [`unwrap_or_else`]: Option::unwrap_or_else
//!
//! ## Transforming contained values
//!
//! These methods transform [`Option`] to [`Result`]:
//!
//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
//! [`Err(err)`] using the provided default `err` value
//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
//! a value of [`Err`] using the provided function
//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
//! [`Result`] of an [`Option`]
//!
//! [`Err(err)`]: Err
//! [`Ok(v)`]: Ok
//! [`Some(v)`]: Some
//! [`ok_or`]: Option::ok_or
//! [`ok_or_else`]: Option::ok_or_else
//! [`transpose`]: Option::transpose
//!
//! These methods transform the [`Some`] variant:
//!
//! * [`filter`] calls the provided predicate function on the contained
//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
//! if the function returns `true`; otherwise, returns [`None`]
//! * [`flatten`] removes one level of nesting from an
//! [`Option<Option<T>>`]
//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
//! provided function to the contained value of [`Some`] and leaving
//! [`None`] values unchanged
//!
//! [`Some(t)`]: Some
//! [`filter`]: Option::filter
//! [`flatten`]: Option::flatten
//! [`map`]: Option::map
//!
//! These methods transform [`Option<T>`] to a value of a possibly
//! different type `U`:
//!
//! * [`map_or`] applies the provided function to the contained value of
//! [`Some`], or returns the provided default value if the [`Option`] is
//! [`None`]
//! * [`map_or_else`] applies the provided function to the contained value
//! of [`Some`], or returns the result of evaluating the provided
//! fallback function if the [`Option`] is [`None`]
//!
//! [`map_or`]: Option::map_or
//! [`map_or_else`]: Option::map_or_else
//!
//! These methods combine the [`Some`] variants of two [`Option`] values:
//!
//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
//! * [`zip_with`] calls the provided function `f` and returns
//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
//!
//! [`Some(f(s, o))`]: Some
//! [`Some(o)`]: Some
//! [`Some(s)`]: Some
//! [`Some((s, o))`]: Some
//! [`zip`]: Option::zip
//! [`zip_with`]: Option::zip_with
//!
//! ## Boolean operators
//!
//! These methods treat the [`Option`] as a boolean value, where [`Some`]
//! acts like [`true`] and [`None`] acts like [`false`]. There are two
//! categories of these methods: ones that take an [`Option`] as input, and
//! ones that take a function as input (to be lazily evaluated).
//!
//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
//! input, and produce an [`Option`] as output. Only the [`and`] method can
//! produce an [`Option<U>`] value having a different inner type `U` than
//! [`Option<T>`].
//!
//! | method | self | input | output |
//! |---------|-----------|-----------|-----------|
//! | [`and`] | `None` | (ignored) | `None` |
//! | [`and`] | `Some(x)` | `None` | `None` |
//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
//! | [`or`] | `None` | `None` | `None` |
//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
//! | [`xor`] | `None` | `None` | `None` |
//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
//!
//! [`and`]: Option::and
//! [`or`]: Option::or
//! [`xor`]: Option::xor
//!
//! The [`and_then`] and [`or_else`] methods take a function as input, and
//! only evaluate the function when they need to produce a new value. Only
//! the [`and_then`] method can produce an [`Option<U>`] value having a
//! different inner type `U` than [`Option<T>`].
//!
//! | method | self | function input | function result | output |
//! |--------------|-----------|----------------|-----------------|-----------|
//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
//!
//! [`and_then`]: Option::and_then
//! [`or_else`]: Option::or_else
//!
//! This is an example of using methods like [`and_then`] and [`or`] in a
//! pipeline of method calls. Early stages of the pipeline pass failure
//! values ([`None`]) through unchanged, and continue processing on
//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
//! message if it receives [`None`].
//!
//! ```
//! # use std::collections::BTreeMap;
//! let mut bt = BTreeMap::new();
//! bt.insert(20u8, "foo");
//! bt.insert(42u8, "bar");
//! let res = [0u8, 1, 11, 200, 22]
//! .into_iter()
//! .map(|x| {
//! // `checked_sub()` returns `None` on error
//! x.checked_sub(1)
//! // same with `checked_mul()`
//! .and_then(|x| x.checked_mul(2))
//! // `BTreeMap::get` returns `None` on error
//! .and_then(|x| bt.get(&x))
//! // Substitute an error message if we have `None` so far
//! .or(Some(&"error!"))
//! .copied()
//! // Won't panic because we unconditionally used `Some` above
//! .unwrap()
//! })
//! .collect::<Vec<_>>();
//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
//! ```
//!
//! ## Comparison operators
//!
//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
//! [`PartialOrd`] implementation. With this order, [`None`] compares as
//! less than any [`Some`], and two [`Some`] compare the same way as their
//! contained values would in `T`. If `T` also implements
//! [`Ord`], then so does [`Option<T>`].
//!
//! ```
//! assert!(None < Some(0));
//! assert!(Some(0) < Some(1));
//! ```
//!
//! ## Iterating over `Option`
//!
//! An [`Option`] can be iterated over. This can be helpful if you need an
//! iterator that is conditionally empty. The iterator will either produce
//! a single value (when the [`Option`] is [`Some`]), or produce no values
//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
//! the [`Option`] is [`None`].
//!
//! [`Some(v)`]: Some
//! [`empty()`]: crate::iter::empty
//! [`once(v)`]: crate::iter::once
//!
//! Iterators over [`Option<T>`] come in three types:
//!
//! * [`into_iter`] consumes the [`Option`] and produces the contained
//! value
//! * [`iter`] produces an immutable reference of type `&T` to the
//! contained value
//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
//! contained value
//!
//! [`into_iter`]: Option::into_iter
//! [`iter`]: Option::iter
//! [`iter_mut`]: Option::iter_mut
//!
//! An iterator over [`Option`] can be useful when chaining iterators, for
//! example, to conditionally insert items. (It's not always necessary to
//! explicitly call an iterator constructor: many [`Iterator`] methods that
//! accept other iterators will also accept iterable types that implement
//! [`IntoIterator`], which includes [`Option`].)
//!
//! ```
//! let yep = Some(42);
//! let nope = None;
//! // chain() already calls into_iter(), so we don't have to do so
//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
//! ```
//!
//! One reason to chain iterators in this way is that a function returning
//! `impl Iterator` must have all possible return values be of the same
//! concrete type. Chaining an iterated [`Option`] can help with that.
//!
//! ```
//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
//! // Explicit returns to illustrate return types matching
//! match do_insert {
//! true => return (0..4).chain(Some(42)).chain(4..8),
//! false => return (0..4).chain(None).chain(4..8),
//! }
//! }
//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
//! ```
//!
//! If we try to do the same thing, but using [`once()`] and [`empty()`],
//! we can't return `impl Iterator` anymore because the concrete types of
//! the return values differ.
//!
//! [`empty()`]: crate::iter::empty
//! [`once()`]: crate::iter::once
//!
//! ```compile_fail,E0308
//! # use std::iter::{empty, once};
//! // This won't compile because all possible returns from the function
//! // must have the same concrete type.
//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
//! // Explicit returns to illustrate return types not matching
//! match do_insert {
//! true => return (0..4).chain(once(42)).chain(4..8),
//! false => return (0..4).chain(empty()).chain(4..8),
//! }
//! }
//! ```
//!
//! ## Collecting into `Option`
//!
//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
//! which allows an iterator over [`Option`] values to be collected into an
//! [`Option`] of a collection of each contained value of the original
//! [`Option`] values, or [`None`] if any of the elements was [`None`].
//!
//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
//!
//! ```
//! let v = [Some(2), Some(4), None, Some(8)];
//! let res: Option<Vec<_>> = v.into_iter().collect();
//! assert_eq!(res, None);
//! let v = [Some(2), Some(4), Some(8)];
//! let res: Option<Vec<_>> = v.into_iter().collect();
//! assert_eq!(res, Some(vec![2, 4, 8]));
//! ```
//!
//! [`Option`] also implements the [`Product`][impl-Product] and
//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
//! to provide the [`product`][Iterator::product] and
//! [`sum`][Iterator::sum] methods.
//!
//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
//!
//! ```
//! let v = [None, Some(1), Some(2), Some(3)];
//! let res: Option<i32> = v.into_iter().sum();
//! assert_eq!(res, None);
//! let v = [Some(1), Some(2), Some(21)];
//! let res: Option<i32> = v.into_iter().product();
//! assert_eq!(res, Some(42));
//! ```
//!
//! ## Modifying an [`Option`] in-place
//!
//! These methods return a mutable reference to the contained value of an
//! [`Option<T>`]:
//!
//! * [`insert`] inserts a value, dropping any old contents
//! * [`get_or_insert`] gets the current value, inserting a provided
//! default value if it is [`None`]
//! * [`get_or_insert_default`] gets the current value, inserting the
//! default value of type `T` (which must implement [`Default`]) if it is
//! [`None`]
//! * [`get_or_insert_with`] gets the current value, inserting a default
//! computed by the provided function if it is [`None`]
//!
//! [`get_or_insert`]: Option::get_or_insert
//! [`get_or_insert_default`]: Option::get_or_insert_default
//! [`get_or_insert_with`]: Option::get_or_insert_with
//! [`insert`]: Option::insert
//!
//! These methods transfer ownership of the contained value of an
//! [`Option`]:
//!
//! * [`take`] takes ownership of the contained value of an [`Option`], if
//! any, replacing the [`Option`] with [`None`]
//! * [`replace`] takes ownership of the contained value of an [`Option`],
//! if any, replacing the [`Option`] with a [`Some`] containing the
//! provided value
//!
//! [`replace`]: Option::replace
//! [`take`]: Option::take
//!
//! # Examples
//!
//! Basic pattern matching on [`Option`]:
//!
//! ```
//! let msg = Some("howdy");
//!
//! // Take a reference to the contained string
//! if let Some(m) = &msg {
//! println!("{}", *m);
//! }
//!
//! // Remove the contained string, destroying the Option
//! let unwrapped_msg = msg.unwrap_or("default message");
//! ```
//!
//! Initialize a result to [`None`] before a loop:
//!
//! ```
//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
//!
//! // A list of data to search through.
//! let all_the_big_things = [
//! Kingdom::Plant(250, "redwood"),
//! Kingdom::Plant(230, "noble fir"),
//! Kingdom::Plant(229, "sugar pine"),
//! Kingdom::Animal(25, "blue whale"),
//! Kingdom::Animal(19, "fin whale"),
//! Kingdom::Animal(15, "north pacific right whale"),
//! ];
//!
//! // We're going to search for the name of the biggest animal,
//! // but to start with we've just got `None`.
//! let mut name_of_biggest_animal = None;
//! let mut size_of_biggest_animal = 0;
//! for big_thing in &all_the_big_things {
//! match *big_thing {
//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
//! // Now we've found the name of some big animal
//! size_of_biggest_animal = size;
//! name_of_biggest_animal = Some(name);
//! }
//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
//! }
//! }
//!
//! match name_of_biggest_animal {
//! Some(name) => println!("the biggest animal is {name}"),
//! None => println!("there are no animals :("),
//! }
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use crate::iter::{self, FromIterator, FusedIterator, TrustedLen};
use crate::marker::Destruct;
use crate::panicking::{panic, panic_str};
use crate::pin::Pin;
use crate::{
cmp, convert, hint, mem,
ops::{self, ControlFlow, Deref, DerefMut},
slice,
};
/// The `Option` type. See [the module level documentation](self) for more.
#[derive(Copy, PartialOrd, Eq, Ord, Debug, Hash)]
#[rustc_diagnostic_item = "Option"]
#[cfg_attr(not(bootstrap), lang = "Option")]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Option<T> {
/// No value.
#[lang = "None"]
#[stable(feature = "rust1", since = "1.0.0")]
None,
/// Some value of type `T`.
#[lang = "Some"]
#[stable(feature = "rust1", since = "1.0.0")]
Some(#[stable(feature = "rust1", since = "1.0.0")] T),
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
impl<T> Option<T> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns `true` if the option is a [`Some`] value.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_some(), false);
/// ```
#[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
pub const fn is_some(&self) -> bool {
matches!(*self, Some(_))
}
/// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
///
/// # Examples
///
/// ```
/// #![feature(is_some_and)]
///
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_some_and(|x| x > 1), true);
///
/// let x: Option<u32> = Some(0);
/// assert_eq!(x.is_some_and(|x| x > 1), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_some_and(|x| x > 1), false);
/// ```
#[must_use]
#[inline]
#[unstable(feature = "is_some_and", issue = "93050")]
pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
match self {
None => false,
Some(x) => f(x),
}
}
/// Returns `true` if the option is a [`None`] value.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_none(), true);
/// ```
#[must_use = "if you intended to assert that this doesn't have a value, consider \
`.and_then(|_| panic!(\"`Option` had a value when expected `None`\"))` instead"]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
pub const fn is_none(&self) -> bool {
!self.is_some()
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Converts from `&Option<T>` to `Option<&T>`.
///
/// # Examples
///
/// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
/// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
/// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
/// reference to the value inside the original.
///
/// [`map`]: Option::map
/// [String]: ../../std/string/struct.String.html "String"
/// [`String`]: ../../std/string/struct.String.html "String"
///
/// ```
/// let text: Option<String> = Some("Hello, world!".to_string());
/// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
/// // then consume *that* with `map`, leaving `text` on the stack.
/// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
/// println!("still can print text: {text:?}");
/// ```
#[inline]
#[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
#[stable(feature = "rust1", since = "1.0.0")]
pub const fn as_ref(&self) -> Option<&T> {
match *self {
Some(ref x) => Some(x),
None => None,
}
}
/// Converts from `&mut Option<T>` to `Option<&mut T>`.
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// match x.as_mut() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_option", issue = "67441")]
pub const fn as_mut(&mut self) -> Option<&mut T> {
match *self {
Some(ref mut x) => Some(x),
None => None,
}
}
/// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
///
/// [&]: reference "shared reference"
#[inline]
#[must_use]
#[stable(feature = "pin", since = "1.33.0")]
#[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
match Pin::get_ref(self).as_ref() {
// SAFETY: `x` is guaranteed to be pinned because it comes from `self`
// which is pinned.
Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
None => None,
}
}
/// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
///
/// [&mut]: reference "mutable reference"
#[inline]
#[must_use]
#[stable(feature = "pin", since = "1.33.0")]
#[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
// SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
// `x` is guaranteed to be pinned because it comes from `self` which is pinned.
unsafe {
match Pin::get_unchecked_mut(self).as_mut() {
Some(x) => Some(Pin::new_unchecked(x)),
None => None,
}
}
}
/// Returns a slice of the contained value, if any. If this is `None`, an
/// empty slice is returned. This can be useful to have a single type of
/// iterator over an `Option` or slice.
///
/// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
/// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
///
/// # Examples
///
/// ```rust
/// #![feature(option_as_slice)]
///
/// assert_eq!(
/// [Some(1234).as_slice(), None.as_slice()],
/// [&[1234][..], &[][..]],
/// );
/// ```
///
/// The inverse of this function is (discounting
/// borrowing) [`[_]::first`](slice::first):
///
/// ```rust
/// #![feature(option_as_slice)]
///
/// for i in [Some(1234_u16), None] {
/// assert_eq!(i.as_ref(), i.as_slice().first());
/// }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "option_as_slice", issue = "108545")]
pub fn as_slice(&self) -> &[T] {
#[cfg(bootstrap)]
match self {
Some(value) => slice::from_ref(value),
None => &[],
}
#[cfg(not(bootstrap))]
// SAFETY: When the `Option` is `Some`, we're using the actual pointer
// to the payload, with a length of 1, so this is equivalent to
// `slice::from_ref`, and thus is safe.
// When the `Option` is `None`, the length used is 0, so to be safe it
// just needs to be aligned, which it is because `&self` is aligned and
// the offset used is a multiple of alignment.
//
// In the new version, the intrinsic always returns a pointer to an
// in-bounds and correctly aligned position for a `T` (even if in the
// `None` case it's just padding).
unsafe {
slice::from_raw_parts(
crate::intrinsics::option_payload_ptr(crate::ptr::from_ref(self)),
usize::from(self.is_some()),
)
}
}
/// Returns a mutable slice of the contained value, if any. If this is
/// `None`, an empty slice is returned. This can be useful to have a
/// single type of iterator over an `Option` or slice.
///
/// Note: Should you have an `Option<&mut T>` instead of a
/// `&mut Option<T>`, which this method takes, you can obtain a mutable
/// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
///
/// # Examples
///
/// ```rust
/// #![feature(option_as_slice)]
///
/// assert_eq!(
/// [Some(1234).as_mut_slice(), None.as_mut_slice()],
/// [&mut [1234][..], &mut [][..]],
/// );
/// ```
///
/// The result is a mutable slice of zero or one items that points into
/// our original `Option`:
///
/// ```rust
/// #![feature(option_as_slice)]
///
/// let mut x = Some(1234);
/// x.as_mut_slice()[0] += 1;
/// assert_eq!(x, Some(1235));
/// ```
///
/// The inverse of this method (discounting borrowing)
/// is [`[_]::first_mut`](slice::first_mut):
///
/// ```rust
/// #![feature(option_as_slice)]
///
/// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
/// ```
#[inline]
#[must_use]
#[unstable(feature = "option_as_slice", issue = "108545")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
#[cfg(bootstrap)]
match self {
Some(value) => slice::from_mut(value),
None => &mut [],
}
#[cfg(not(bootstrap))]
// SAFETY: When the `Option` is `Some`, we're using the actual pointer
// to the payload, with a length of 1, so this is equivalent to
// `slice::from_mut`, and thus is safe.
// When the `Option` is `None`, the length used is 0, so to be safe it
// just needs to be aligned, which it is because `&self` is aligned and
// the offset used is a multiple of alignment.
//
// In the new version, the intrinsic creates a `*const T` from a
// mutable reference so it is safe to cast back to a mutable pointer
// here. As with `as_slice`, the intrinsic always returns a pointer to
// an in-bounds and correctly aligned position for a `T` (even if in
// the `None` case it's just padding).
unsafe {
slice::from_raw_parts_mut(
crate::intrinsics::option_payload_ptr(crate::ptr::from_mut(self).cast_const())
.cast_mut(),
usize::from(self.is_some()),
)
}
}
/////////////////////////////////////////////////////////////////////////
// Getting to contained values
/////////////////////////////////////////////////////////////////////////
/// Returns the contained [`Some`] value, consuming the `self` value.
///
/// # Panics
///
/// Panics if the value is a [`None`] with a custom panic message provided by
/// `msg`.
///
/// # Examples
///
/// ```
/// let x = Some("value");
/// assert_eq!(x.expect("fruits are healthy"), "value");
/// ```
///
/// ```should_panic
/// let x: Option<&str> = None;
/// x.expect("fruits are healthy"); // panics with `fruits are healthy`
/// ```
///
/// # Recommended Message Style
///
/// We recommend that `expect` messages are used to describe the reason you
/// _expect_ the `Option` should be `Some`.
///
/// ```should_panic
/// # let slice: &[u8] = &[];
/// let item = slice.get(0)
/// .expect("slice should not be empty");
/// ```
///
/// **Hint**: If you're having trouble remembering how to phrase expect
/// error messages remember to focus on the word "should" as in "env
/// variable should be set by blah" or "the given binary should be available
/// and executable by the current user".
///
/// For more detail on expect message styles and the reasoning behind our
/// recommendation please refer to the section on ["Common Message
/// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
#[inline]
#[track_caller]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_option", issue = "67441")]
pub const fn expect(self, msg: &str) -> T {
match self {
Some(val) => val,
None => expect_failed(msg),
}
}
/// Returns the contained [`Some`] value, consuming the `self` value.
///
/// Because this function may panic, its use is generally discouraged.
/// Instead, prefer to use pattern matching and handle the [`None`]
/// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
/// [`unwrap_or_default`].
///
/// [`unwrap_or`]: Option::unwrap_or
/// [`unwrap_or_else`]: Option::unwrap_or_else
/// [`unwrap_or_default`]: Option::unwrap_or_default
///
/// # Panics
///
/// Panics if the self value equals [`None`].
///
/// # Examples
///
/// ```
/// let x = Some("air");
/// assert_eq!(x.unwrap(), "air");
/// ```
///
/// ```should_panic
/// let x: Option<&str> = None;
/// assert_eq!(x.unwrap(), "air"); // fails
/// ```
#[inline]
#[track_caller]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_option", issue = "67441")]
pub const fn unwrap(self) -> T {
match self {
Some(val) => val,
None => panic("called `Option::unwrap()` on a `None` value"),
}
}
/// Returns the contained [`Some`] value or a provided default.
///
/// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`unwrap_or_else`],
/// which is lazily evaluated.
///
/// [`unwrap_or_else`]: Option::unwrap_or_else
///
/// # Examples
///
/// ```
/// assert_eq!(Some("car").unwrap_or("bike"), "car");
/// assert_eq!(None.unwrap_or("bike"), "bike");
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
pub const fn unwrap_or(self, default: T) -> T
where
T: ~const Destruct,
{
match self {
Some(x) => x,
None => default,
}
}
/// Returns the contained [`Some`] value or computes it from a closure.
///
/// # Examples
///
/// ```
/// let k = 10;
/// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
/// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
pub const fn unwrap_or_else<F>(self, f: F) -> T
where
F: ~const FnOnce() -> T,
F: ~const Destruct,
{
match self {