-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathadt.rs
497 lines (468 loc) · 20.4 KB
/
adt.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Representation of Algebraic Data Types
//!
//! This module determines how to represent enums, structs, and tuples
//! based on their monomorphized types; it is responsible both for
//! choosing a representation and translating basic operations on
//! values of those types. (Note: exporting the representations for
//! debuggers is handled in debuginfo.rs, not here.)
//!
//! Note that the interface treats everything as a general case of an
//! enum, so structs/tuples/etc. have one pseudo-variant with
//! discriminant 0; i.e., as if they were a univariant enum.
//!
//! Having everything in one place will enable improvements to data
//! structure representation; possibilities include:
//!
//! - User-specified alignment (e.g., cacheline-aligning parts of
//! concurrently accessed data structures); LLVM can't represent this
//! directly, so we'd have to insert padding fields in any structure
//! that might contain one and adjust GEP indices accordingly. See
//! issue #4578.
//!
//! - Store nested enums' discriminants in the same word. Rather, if
//! some variants start with enums, and those enums representations
//! have unused alignment padding between discriminant and body, the
//! outer enum's discriminant can be stored there and those variants
//! can start at offset 0. Kind of fancy, and might need work to
//! make copies of the inner enum type cooperate, but it could help
//! with `Option` or `Result` wrapped around another enum.
//!
//! - Tagged pointers would be neat, but given that any type can be
//! used unboxed and any field can have pointers (including mutable)
//! taken to it, implementing them for Rust seems difficult.
use std;
use llvm::{ValueRef, True, IntEQ, IntNE};
use rustc::ty::{self, Ty};
use rustc::ty::layout::{self, LayoutTyper};
use common::*;
use builder::Builder;
use base;
use machine;
use monomorphize;
use type_::Type;
use type_of;
use mir::lvalue::Alignment;
/// Given an enum, struct, closure, or tuple, extracts fields.
/// Treats closures as a struct with one variant.
/// `empty_if_no_variants` is a switch to deal with empty enums.
/// If true, `variant_index` is disregarded and an empty Vec returned in this case.
pub fn compute_fields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>,
variant_index: usize,
empty_if_no_variants: bool) -> Vec<Ty<'tcx>> {
match t.sty {
ty::TyAdt(ref def, _) if def.variants.len() == 0 && empty_if_no_variants => {
Vec::default()
},
ty::TyAdt(ref def, ref substs) => {
def.variants[variant_index].fields.iter().map(|f| {
monomorphize::field_ty(cx.tcx(), substs, f)
}).collect::<Vec<_>>()
},
ty::TyTuple(fields, _) => fields.to_vec(),
ty::TyClosure(def_id, substs) => {
if variant_index > 0 { bug!("{} is a closure, which only has one variant", t);}
substs.upvar_tys(def_id, cx.tcx()).collect()
},
ty::TyGenerator(def_id, substs, _) => {
if variant_index > 0 { bug!("{} is a generator, which only has one variant", t);}
substs.field_tys(def_id, cx.tcx()).map(|t| {
cx.tcx().fully_normalize_associated_types_in(&t)
}).collect()
},
_ => bug!("{} is not a type that can have fields.", t)
}
}
/// LLVM-level types are a little complicated.
///
/// C-like enums need to be actual ints, not wrapped in a struct,
/// because that changes the ABI on some platforms (see issue #10308).
///
/// For nominal types, in some cases, we need to use LLVM named structs
/// and fill in the actual contents in a second pass to prevent
/// unbounded recursion; see also the comments in `trans::type_of`.
pub fn type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>) -> Type {
generic_type_of(cx, t, None)
}
pub fn incomplete_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, name: &str) -> Type {
generic_type_of(cx, t, Some(name))
}
pub fn finish_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, llty: &mut Type) {
let l = cx.layout_of(t);
debug!("finish_type_of: {} with layout {:#?}", t, l);
match *l {
layout::CEnum { .. } | layout::General { .. }
| layout::UntaggedUnion { .. } | layout::RawNullablePointer { .. } => { }
layout::Univariant { ..}
| layout::StructWrappedNullablePointer { .. } => {
let (nonnull_variant_index, nonnull_variant, packed) = match *l {
layout::Univariant { ref variant, .. } => (0, variant, variant.packed),
layout::StructWrappedNullablePointer { nndiscr, ref nonnull, .. } =>
(nndiscr, nonnull, nonnull.packed),
_ => unreachable!()
};
let fields = compute_fields(cx, t, nonnull_variant_index as usize, true);
llty.set_struct_body(&struct_llfields(cx, &fields, nonnull_variant),
packed)
},
_ => bug!("This function cannot handle {} with layout {:#?}", t, l)
}
}
fn generic_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
name: Option<&str>) -> Type {
let l = cx.layout_of(t);
debug!("adt::generic_type_of t: {:?} name: {:?}", t, name);
match *l {
layout::CEnum { discr, .. } => Type::from_integer(cx, discr),
layout::RawNullablePointer { nndiscr, .. } => {
let (def, substs) = match t.sty {
ty::TyAdt(d, s) => (d, s),
_ => bug!("{} is not an ADT", t)
};
let nnty = monomorphize::field_ty(cx.tcx(), substs,
&def.variants[nndiscr as usize].fields[0]);
if let layout::Scalar { value: layout::Pointer, .. } = *cx.layout_of(nnty) {
Type::i8p(cx)
} else {
type_of::type_of(cx, nnty)
}
}
layout::StructWrappedNullablePointer { nndiscr, ref nonnull, .. } => {
let fields = compute_fields(cx, t, nndiscr as usize, false);
match name {
None => {
Type::struct_(cx, &struct_llfields(cx, &fields, nonnull),
nonnull.packed)
}
Some(name) => {
Type::named_struct(cx, name)
}
}
}
layout::Univariant { ref variant, .. } => {
// Note that this case also handles empty enums.
// Thus the true as the final parameter here.
let fields = compute_fields(cx, t, 0, true);
match name {
None => {
let fields = struct_llfields(cx, &fields, &variant);
Type::struct_(cx, &fields, variant.packed)
}
Some(name) => {
// Hypothesis: named_struct's can never need a
// drop flag. (... needs validation.)
Type::named_struct(cx, name)
}
}
}
layout::UntaggedUnion { ref variants, .. }=> {
// Use alignment-sized ints to fill all the union storage.
let size = variants.stride().bytes();
let align = variants.align.abi();
let fill = union_fill(cx, size, align);
match name {
None => {
Type::struct_(cx, &[fill], variants.packed)
}
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&[fill], variants.packed);
llty
}
}
}
layout::General { discr, size, align, primitive_align, .. } => {
// We need a representation that has:
// * The alignment of the most-aligned field
// * The size of the largest variant (rounded up to that alignment)
// * No alignment padding anywhere any variant has actual data
// (currently matters only for enums small enough to be immediate)
// * The discriminant in an obvious place.
//
// So we start with the discriminant, pad it up to the alignment with
// more of its own type, then use alignment-sized ints to get the rest
// of the size.
let size = size.bytes();
let align = align.abi();
let primitive_align = primitive_align.abi();
assert!(align <= std::u32::MAX as u64);
let discr_ty = Type::from_integer(cx, discr);
let discr_size = discr.size().bytes();
let padded_discr_size = roundup(discr_size, align as u32);
let variant_part_size = size-padded_discr_size;
let variant_fill = union_fill(cx, variant_part_size, primitive_align);
assert_eq!(machine::llalign_of_min(cx, variant_fill), primitive_align as u32);
assert_eq!(padded_discr_size % discr_size, 0); // Ensure discr_ty can fill pad evenly
let fields: Vec<Type> =
[discr_ty,
Type::array(&discr_ty, (padded_discr_size - discr_size)/discr_size),
variant_fill].iter().cloned().collect();
match name {
None => {
Type::struct_(cx, &fields, false)
}
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&fields, false);
llty
}
}
}
_ => bug!("Unsupported type {} represented as {:#?}", t, l)
}
}
fn union_fill(cx: &CrateContext, size: u64, align: u64) -> Type {
assert_eq!(size%align, 0);
assert_eq!(align.count_ones(), 1, "Alignment must be a power fof 2. Got {}", align);
let align_units = size/align;
let layout_align = layout::Align::from_bytes(align, align).unwrap();
if let Some(ity) = layout::Integer::for_abi_align(cx, layout_align) {
Type::array(&Type::from_integer(cx, ity), align_units)
} else {
Type::array(&Type::vector(&Type::i32(cx), align/4),
align_units)
}
}
// Double index to account for padding (FieldPath already uses `Struct::memory_index`)
fn struct_llfields_path(discrfield: &layout::FieldPath) -> Vec<usize> {
discrfield.iter().map(|&i| (i as usize) << 1).collect::<Vec<_>>()
}
// Lookup `Struct::memory_index` and double it to account for padding
pub fn struct_llfields_index(variant: &layout::Struct, index: usize) -> usize {
(variant.memory_index[index] as usize) << 1
}
pub fn struct_llfields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, field_tys: &Vec<Ty<'tcx>>,
variant: &layout::Struct) -> Vec<Type> {
debug!("struct_llfields: variant: {:?}", variant);
let mut first_field = true;
let mut min_offset = 0;
let mut result: Vec<Type> = Vec::with_capacity(field_tys.len() * 2);
let field_iter = variant.field_index_by_increasing_offset().map(|i| {
(i, field_tys[i as usize], variant.offsets[i as usize].bytes()) });
for (index, ty, target_offset) in field_iter {
if first_field {
debug!("struct_llfields: {} ty: {} min_offset: {} target_offset: {}",
index, ty, min_offset, target_offset);
first_field = false;
} else {
assert!(target_offset >= min_offset);
let padding_bytes = if variant.packed { 0 } else { target_offset - min_offset };
result.push(Type::array(&Type::i8(cx), padding_bytes));
debug!("struct_llfields: {} ty: {} pad_bytes: {} min_offset: {} target_offset: {}",
index, ty, padding_bytes, min_offset, target_offset);
}
let llty = type_of::in_memory_type_of(cx, ty);
result.push(llty);
let layout = cx.layout_of(ty);
let target_size = layout.size(&cx.tcx().data_layout).bytes();
min_offset = target_offset + target_size;
}
if variant.sized && !field_tys.is_empty() {
if variant.stride().bytes() < min_offset {
bug!("variant: {:?} stride: {} min_offset: {}", variant, variant.stride().bytes(),
min_offset);
}
let padding_bytes = variant.stride().bytes() - min_offset;
debug!("struct_llfields: pad_bytes: {} min_offset: {} min_size: {} stride: {}\n",
padding_bytes, min_offset, variant.min_size.bytes(), variant.stride().bytes());
result.push(Type::array(&Type::i8(cx), padding_bytes));
assert!(result.len() == (field_tys.len() * 2));
} else {
debug!("struct_llfields: min_offset: {} min_size: {} stride: {}\n",
min_offset, variant.min_size.bytes(), variant.stride().bytes());
}
result
}
pub fn is_discr_signed<'tcx>(l: &layout::Layout) -> bool {
match *l {
layout::CEnum { signed, .. }=> signed,
_ => false,
}
}
/// Obtain the actual discriminant of a value.
pub fn trans_get_discr<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
t: Ty<'tcx>,
scrutinee: ValueRef,
alignment: Alignment,
cast_to: Option<Type>,
range_assert: bool
) -> ValueRef {
debug!("trans_get_discr t: {:?}", t);
let l = bcx.ccx.layout_of(t);
let val = match *l {
layout::CEnum { discr, min, max, .. } => {
load_discr(bcx, discr, scrutinee, alignment, min, max, range_assert)
}
layout::General { discr, ref variants, .. } => {
let ptr = bcx.struct_gep(scrutinee, 0);
load_discr(bcx, discr, ptr, alignment,
0, variants.len() as u64 - 1,
range_assert)
}
layout::Univariant { .. } | layout::UntaggedUnion { .. } => C_u8(bcx.ccx, 0),
layout::RawNullablePointer { nndiscr, .. } => {
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
let discr = bcx.load(scrutinee, alignment.to_align());
bcx.icmp(cmp, discr, C_null(val_ty(discr)))
}
layout::StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
struct_wrapped_nullable_bitdiscr(bcx, nndiscr, discrfield, scrutinee, alignment)
},
_ => bug!("{} is not an enum", t)
};
match cast_to {
None => val,
Some(llty) => bcx.intcast(val, llty, is_discr_signed(&l))
}
}
fn struct_wrapped_nullable_bitdiscr(
bcx: &Builder,
nndiscr: u64,
discrfield: &layout::FieldPath,
scrutinee: ValueRef,
alignment: Alignment,
) -> ValueRef {
let path = struct_llfields_path(discrfield);
let llptrptr = bcx.gepi(scrutinee, &path);
let llptr = bcx.load(llptrptr, alignment.to_align());
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
bcx.icmp(cmp, llptr, C_null(val_ty(llptr)))
}
/// Helper for cases where the discriminant is simply loaded.
fn load_discr(bcx: &Builder, ity: layout::Integer, ptr: ValueRef,
alignment: Alignment, min: u64, max: u64,
range_assert: bool)
-> ValueRef {
let llty = Type::from_integer(bcx.ccx, ity);
assert_eq!(val_ty(ptr), llty.ptr_to());
let bits = ity.size().bits();
assert!(bits <= 64);
let bits = bits as usize;
let mask = !0u64 >> (64 - bits);
// For a (max) discr of -1, max will be `-1 as usize`, which overflows.
// However, that is fine here (it would still represent the full range),
if max.wrapping_add(1) & mask == min & mask || !range_assert {
// i.e., if the range is everything. The lo==hi case would be
// rejected by the LLVM verifier (it would mean either an
// empty set, which is impossible, or the entire range of the
// type, which is pointless).
bcx.load(ptr, alignment.to_align())
} else {
// llvm::ConstantRange can deal with ranges that wrap around,
// so an overflow on (max + 1) is fine.
bcx.load_range_assert(ptr, min, max.wrapping_add(1), /* signed: */ True,
alignment.to_align())
}
}
/// Set the discriminant for a new value of the given case of the given
/// representation.
pub fn trans_set_discr<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, t: Ty<'tcx>, val: ValueRef, to: u64) {
let l = bcx.ccx.layout_of(t);
match *l {
layout::CEnum{ discr, min, max, .. } => {
assert_discr_in_range(min, max, to);
bcx.store(C_int(Type::from_integer(bcx.ccx, discr), to as i64),
val, None);
}
layout::General{ discr, .. } => {
bcx.store(C_int(Type::from_integer(bcx.ccx, discr), to as i64),
bcx.struct_gep(val, 0), None);
}
layout::Univariant { .. }
| layout::UntaggedUnion { .. }
| layout::Vector { .. } => {
assert_eq!(to, 0);
}
layout::RawNullablePointer { nndiscr, .. } => {
if to != nndiscr {
let llptrty = val_ty(val).element_type();
bcx.store(C_null(llptrty), val, None);
}
}
layout::StructWrappedNullablePointer { nndiscr, ref discrfield, ref nonnull, .. } => {
if to != nndiscr {
if target_sets_discr_via_memset(bcx) {
// Issue #34427: As workaround for LLVM bug on
// ARM, use memset of 0 on whole struct rather
// than storing null to single target field.
let llptr = bcx.pointercast(val, Type::i8(bcx.ccx).ptr_to());
let fill_byte = C_u8(bcx.ccx, 0);
let size = C_usize(bcx.ccx, nonnull.stride().bytes());
let align = C_i32(bcx.ccx, nonnull.align.abi() as i32);
base::call_memset(bcx, llptr, fill_byte, size, align, false);
} else {
let path = struct_llfields_path(discrfield);
let llptrptr = bcx.gepi(val, &path);
let llptrty = val_ty(llptrptr).element_type();
bcx.store(C_null(llptrty), llptrptr, None);
}
}
}
_ => bug!("Cannot handle {} represented as {:#?}", t, l)
}
}
fn target_sets_discr_via_memset<'a, 'tcx>(bcx: &Builder<'a, 'tcx>) -> bool {
bcx.sess().target.target.arch == "arm" || bcx.sess().target.target.arch == "aarch64"
}
pub fn assert_discr_in_range<D: PartialOrd>(min: D, max: D, discr: D) {
if min <= max {
assert!(min <= discr && discr <= max)
} else {
assert!(min <= discr || discr <= max)
}
}
// FIXME this utility routine should be somewhere more general
#[inline]
fn roundup(x: u64, a: u32) -> u64 { let a = a as u64; ((x + (a - 1)) / a) * a }
/// Extract a field of a constant value, as appropriate for its
/// representation.
///
/// (Not to be confused with `common::const_get_elt`, which operates on
/// raw LLVM-level structs and arrays.)
pub fn const_get_field<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>,
val: ValueRef,
ix: usize) -> ValueRef {
let l = ccx.layout_of(t);
match *l {
layout::CEnum { .. } => bug!("element access in C-like enum const"),
layout::Univariant { ref variant, .. } => {
const_struct_field(val, variant.memory_index[ix] as usize)
}
layout::Vector { .. } => const_struct_field(val, ix),
layout::UntaggedUnion { .. } => const_struct_field(val, 0),
_ => bug!("{} does not have fields.", t)
}
}
/// Extract field of struct-like const, skipping our alignment padding.
fn const_struct_field(val: ValueRef, ix: usize) -> ValueRef {
// Get the ix-th non-undef element of the struct.
let mut real_ix = 0; // actual position in the struct
let mut ix = ix; // logical index relative to real_ix
let mut field;
loop {
loop {
field = const_get_elt(val, &[real_ix]);
if !is_undef(field) {
break;
}
real_ix = real_ix + 1;
}
if ix == 0 {
return field;
}
ix = ix - 1;
real_ix = real_ix + 1;
}
}