-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathmem.rs
339 lines (318 loc) · 9.4 KB
/
mem.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Basic functions for dealing with memory
//!
//! This module contains functions for querying the size and alignment of
//! types, initializing and manipulating memory.
#![stable(feature = "rust1", since = "1.0.0")]
use marker::Sized;
use intrinsics;
use ptr;
#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::transmute;
/// Moves a thing into the void.
///
/// The forget function will take ownership of the provided value but neglect
/// to run any required cleanup or memory management operations on it.
///
/// This function is the unsafe version of the `drop` function because it does
/// not run any destructors.
#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::forget;
/// Returns the size of a type in bytes.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::size_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn size_of<T>() -> usize {
unsafe { intrinsics::size_of::<T>() }
}
/// Returns the size of the type that `_val` points to in bytes.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::size_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn size_of_val<T>(_val: &T) -> usize {
size_of::<T>()
}
/// Returns the ABI-required minimum alignment of a type
///
/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::min_align_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn min_align_of<T>() -> usize {
unsafe { intrinsics::min_align_of::<T>() }
}
/// Returns the ABI-required minimum alignment of the type of the value that `_val` points to
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::min_align_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn min_align_of_val<T>(_val: &T) -> usize {
min_align_of::<T>()
}
/// Returns the alignment in memory for a type.
///
/// This function will return the alignment, in bytes, of a type in memory. If the alignment
/// returned is adhered to, then the type is guaranteed to function properly.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::align_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn align_of<T>() -> usize {
// We use the preferred alignment as the default alignment for a type. This
// appears to be what clang migrated towards as well:
//
// http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20110725/044411.html
unsafe { intrinsics::pref_align_of::<T>() }
}
/// Returns the alignment of the type of the value that `_val` points to.
///
/// This is similar to `align_of`, but function will properly handle types such as trait objects
/// (in the future), returning the alignment for an arbitrary value at runtime.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::align_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn align_of_val<T>(_val: &T) -> usize {
align_of::<T>()
}
/// Create a value initialized to zero.
///
/// This function is similar to allocating space for a local variable and zeroing it out (an unsafe
/// operation).
///
/// Care must be taken when using this function, if the type `T` has a destructor and the value
/// falls out of scope (due to unwinding or returning) before being initialized, then the
/// destructor will run on zeroed data, likely leading to crashes.
///
/// This is useful for FFI functions sometimes, but should generally be avoided.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let x: i32 = unsafe { mem::zeroed() };
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn zeroed<T>() -> T {
intrinsics::init()
}
/// Create an uninitialized value.
///
/// Care must be taken when using this function, if the type `T` has a destructor and the value
/// falls out of scope (due to unwinding or returning) before being initialized, then the
/// destructor will run on uninitialized data, likely leading to crashes.
///
/// This is useful for FFI functions sometimes, but should generally be avoided.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let x: i32 = unsafe { mem::uninitialized() };
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn uninitialized<T>() -> T {
intrinsics::uninit()
}
/// Swap the values at two mutable locations of the same type, without deinitialising or copying
/// either one.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let x = &mut 5;
/// let y = &mut 42;
///
/// mem::swap(x, y);
///
/// assert_eq!(42, *x);
/// assert_eq!(5, *y);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap<T>(x: &mut T, y: &mut T) {
unsafe {
// Give ourselves some scratch space to work with
let mut t: T = uninitialized();
// Perform the swap, `&mut` pointers never alias
ptr::copy_nonoverlapping(&mut t, &*x, 1);
ptr::copy_nonoverlapping(x, &*y, 1);
ptr::copy_nonoverlapping(y, &t, 1);
// y and t now point to the same thing, but we need to completely forget `t`
// because it's no longer relevant.
forget(t);
}
}
/// Replace the value at a mutable location with a new one, returning the old value, without
/// deinitialising or copying either one.
///
/// This is primarily used for transferring and swapping ownership of a value in a mutable
/// location.
///
/// # Examples
///
/// A simple example:
///
/// ```
/// use std::mem;
///
/// let mut v: Vec<i32> = Vec::new();
///
/// mem::replace(&mut v, Vec::new());
/// ```
///
/// This function allows consumption of one field of a struct by replacing it with another value.
/// The normal approach doesn't always work:
///
/// ```rust,ignore
/// struct Buffer<T> { buf: Vec<T> }
///
/// impl<T> Buffer<T> {
/// fn get_and_reset(&mut self) -> Vec<T> {
/// // error: cannot move out of dereference of `&mut`-pointer
/// let buf = self.buf;
/// self.buf = Vec::new();
/// buf
/// }
/// }
/// ```
///
/// Note that `T` does not necessarily implement `Clone`, so it can't even clone and reset
/// `self.buf`. But `replace` can be used to disassociate the original value of `self.buf` from
/// `self`, allowing it to be returned:
///
/// ```
/// use std::mem;
/// # struct Buffer<T> { buf: Vec<T> }
/// impl<T> Buffer<T> {
/// fn get_and_reset(&mut self) -> Vec<T> {
/// mem::replace(&mut self.buf, Vec::new())
/// }
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn replace<T>(dest: &mut T, mut src: T) -> T {
swap(dest, &mut src);
src
}
/// Disposes of a value.
///
/// This function can be used to destroy any value by allowing `drop` to take ownership of its
/// argument.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
///
/// let x = RefCell::new(1);
///
/// let mut mutable_borrow = x.borrow_mut();
/// *mutable_borrow = 1;
///
/// drop(mutable_borrow); // relinquish the mutable borrow on this slot
///
/// let borrow = x.borrow();
/// println!("{}", *borrow);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn drop<T>(_x: T) { }
/// Interprets `src` as `&U`, and then reads `src` without moving the contained value.
///
/// This function will unsafely assume the pointer `src` is valid for `sizeof(U)` bytes by
/// transmuting `&T` to `&U` and then reading the `&U`. It will also unsafely create a copy of the
/// contained value instead of moving out of `src`.
///
/// It is not a compile-time error if `T` and `U` have different sizes, but it is highly encouraged
/// to only invoke this function where `T` and `U` have the same size. This function triggers
/// undefined behavior if `U` is larger than `T`.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let one = unsafe { mem::transmute_copy(&1) };
///
/// assert_eq!(1, one);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn transmute_copy<T, U>(src: &T) -> U {
ptr::read(src as *const T as *const U)
}
/// Transforms lifetime of the second pointer to match the first.
#[inline]
#[unstable(feature = "core",
reason = "this function may be removed in the future due to its \
questionable utility")]
pub unsafe fn copy_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S,
ptr: &T) -> &'a T {
transmute(ptr)
}
/// Transforms lifetime of the second mutable pointer to match the first.
#[inline]
#[unstable(feature = "core",
reason = "this function may be removed in the future due to its \
questionable utility")]
pub unsafe fn copy_mut_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S,
ptr: &mut T)
-> &'a mut T
{
transmute(ptr)
}