Skip to content

rush-db/rushdb-python

Repository files navigation

RushDB Logo

RushDB Python SDK

PyPI - Version PyPI - Python Version PyPI - License

RushDB is an instant database for modern apps and DS/ML ops built on top of Neo4j. It automates data normalization, manages relationships, and infers data types.

📖 Documentation🌐 Website☁️ Cloud Platform

Installation

pip install rushdb

Quick Start

from rushdb import RushDB

# Initialize the client
db = RushDB("YOUR_API_TOKEN")

# Create a record
user = db.records.create(
    label="USER",
    data={
        "name": "John Doe",
        "email": "john@example.com",
        "age": 30
    }
)

# Find records
result = db.records.find({
    "where": {
        "age": {"$gte": 18},
        "name": {"$startsWith": "J"}
    },
    "limit": 10
})

# Work with SearchResult
print(f"Found {len(result)} records out of {result.total} total")

# Iterate over results
for record in result:
    print(f"User: {record.get('name')} (Age: {record.get('age')})")

# Check if there are more results
if result.has_more:
    print("There are more records available")

# Access specific records
first_user = result[0] if result else None

# Create relationships
company = db.records.create(
    label="COMPANY",
    data={"name": "Acme Inc."}
)

# Attach records with a relationship
user.attach(
    target=company,
    options={"type": "WORKS_AT", "direction": "out"}
)

Pushing Nested JSON

RushDB automatically normalizes nested objects into a graph structure:

# Push nested JSON with automatic relationship creation
db.records.create_many("COMPANY", {
    "name": "Google LLC",
    "rating": 4.9,
    "DEPARTMENT": [{
        "name": "Research & Development",
        "PROJECT": [{
            "name": "Bard AI",
            "EMPLOYEE": [{
                "name": "Jeff Dean",
                "position": "Head of AI Research"
            }]
        }]
    }]
})

SearchResult API

RushDB Python SDK uses a modern SearchResult container that follows Python SDK best practices similar to boto3, google-cloud libraries, and other popular SDKs.

SearchResult Features

  • Generic type support: Uses Python's typing generics (SearchResult[T]) with RecordSearchResult as a type alias for SearchResult[Record]
  • List-like access: Index, slice, and iterate like a regular list
  • Search context: Access total count, pagination info, and the original search query
  • Boolean conversion: Use in if statements naturally (returns True if the result contains any items)
  • Pagination support: Built-in pagination information and has_more property

Basic Usage

# Perform a search
result = db.records.find({
    "where": {"status": "active"},
    "limit": 10,
    "skip": 20
})

# Check if we have results
if result:
    print(f"Found {len(result)} records")

# Access search result information
print(f"Total matching records: {result.total}")
print(f"Has more results: {result.has_more}")
print(f"Search query: {result.search_query}")

# Get detailed pagination info
page_info = result.get_page_info()
print(f"Page info: {page_info}")

# Iterate over results
for record in result:
    print(f"Record: {record.get('name')}")

# List comprehensions work
names = [r.get('name') for r in result]

# Indexing and slicing
first_record = result[0] if result else None
first_five = result[:5]

# String representation
print(repr(result))  # SearchResult(count=10, total=42)

SearchResult Constructor

def __init__(
    self,
    data: List[T],
    total: Optional[int] = None,
    search_query: Optional[SearchQuery] = None,
):
    """
    Initialize search result.

    Args:
        data: List of result items
        total: Total number of matching records (defaults to len(data) if not provided)
        search_query: The search query used to generate this result (defaults to {})
    """

SearchResult Properties

Property Type Description
data List[T] The list of result items (generic type)
total int Total number of matching records
has_more bool Whether there are more records available
search_query SearchQuery The search query used to generate result

SearchResult Methods

Method Return Type Description
to_dict() dict Returns standardized dict with total, data, search_query
get_page_info() dict Returns pagination info including total, loaded, has_more

Implementation Notes:

  • If search_query is not provided during initialization, it defaults to an empty dictionary {}
  • The has_more property is calculated by comparing total with loaded records
  • The __bool__ method returns True if the result contains any items (len(data) > 0)
  • get_page_info() provides detailed pagination metadata for advanced use cases

Pagination Example

# Paginated search using skip/limit in query
def paginate_results(query_base, page_size=10):
    current_skip = 0

    while True:
        # Add pagination to query
        query = {**query_base, "limit": page_size, "skip": current_skip}
        result = db.records.find(query)

        if not result:
            break

        print(f"Processing {len(result)} records (skip: {current_skip})")

        for record in result:
            process_record(record)

        if not result.has_more:
            break

        current_skip += len(result)

# Usage
paginate_results({
    "where": {"category": "electronics"},
    "orderBy": {"created_at": "desc"}
})

RecordSearchResult Type

The SDK provides a specialized type alias for search results containing Record objects:

# Type alias for record search results
RecordSearchResult = SearchResult[Record]

This type is what's returned by methods like db.records.find(), providing type safety and specialized handling for Record objects while leveraging all the functionality of the generic SearchResult class.

Improved Record API

The Record class has been enhanced with better data access patterns and utility methods.

Enhanced Data Access

# Create a record
user = db.records.create("User", {
    "name": "John Doe",
    "email": "john@example.com",
    "age": 30,
    "department": "Engineering"
})

# Safe field access with defaults
name = user.get("name")                    # "John Doe"
phone = user.get("phone", "Not provided") # "Not provided"

# Get clean user data (excludes internal fields like __id, __label)
user_data = user.get_data()
# Returns: {"name": "John Doe", "email": "john@example.com", "age": 30, "department": "Engineering"}

# Get all data including internal fields
full_data = user.get_data(exclude_internal=False)
# Includes: __id, __label, __proptypes, etc.

# Convenient fields property
fields = user.fields  # Same as user.get_data()

# Dictionary conversion
user_dict = user.to_dict()  # Clean user data
full_dict = user.to_dict(exclude_internal=False)  # All data

# Direct field access
user_name = user["name"]        # Direct access
user_id = user["__id"]          # Internal field access

Record Existence Checking

# Safe existence checking (no exceptions)
if user.exists():
    print("Record is valid and accessible")
    user.update({"status": "active"})
else:
    print("Record doesn't exist or is not accessible")

# Perfect for validation workflows
def process_record_safely(record):
    if not record.exists():
        return None
    return record.get_data()

# Conditional operations
records = db.records.find({"where": {"status": "pending"}})
for record in records:
    if record.exists():
        record.update({"processed_at": datetime.now()})

String Representations

user = db.records.create("User", {"name": "Alice Johnson"})

print(repr(user))  # Record(id='abc-123', label='User')
print(str(user))   # User: Alice Johnson

# For records without names
product = db.records.create("Product", {"sku": "ABC123"})
print(str(product))  # Product (product-id-here)

Complete Documentation

For comprehensive documentation, tutorials, and examples, please visit:

docs.rushdb.com/python-sdk

Documentation includes:

  • Complete Records API reference
  • Relationship management
  • Complex query examples
  • Transaction usage
  • Vector search capabilities
  • Data import tools

Support


set()

Updates a record by ID, replacing all data.

Signature:

def set(
    self,
    record_id: str,
    data: Dict[str, Any],
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • record_id (str): ID of the record to update
  • data (Dict[str, Any]): New record data
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Update entire record data
new_data = {
    "name": "Updated Company Name",
    "rating": 5.0
}

response = db.records.set(
    record_id="record-123",
    data=new_data
)

update()

Updates specific fields of a record by ID.

Signature:

def update(
    self,
    record_id: str,
    data: Dict[str, Any],
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • record_id (str): ID of the record to update
  • data (Dict[str, Any]): Partial record data to update
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Update specific fields
updates = {
    "rating": 4.8,
    "status": "active"
}

response = db.records.update(
    record_id="record-123",
    data=updates
)

find()

Searches for records matching specified criteria.

Signature:

def find(
    self,
    search_query: Optional[SearchQuery] = None,
    record_id: Optional[str] = None,
    transaction: Optional[Transaction] = None
) -> RecordSearchResult

Arguments:

  • search_query (Optional[SearchQuery]): Search query parameters
  • record_id (Optional[str]): Optional record ID to search from
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • RecordSearchResult: SearchResult container with matching records and metadata

Example:

# Search for records with complex criteria
search_query = {
    "where": {
        "$and": [
            {"age": {"$gte": 18}},
            {"status": "active"},
            {"department": "Engineering"}
        ]
    },
    "orderBy": {"created_at": "desc"},
    "limit": 10
}

result = db.records.find(search_query=search_query)

# Work with SearchResult
print(f"Found {len(result)} out of {result.total} total records")

# Iterate over results
for record in result:
    print(f"Employee: {record.get('name')} - {record.get('department')}")

# Check pagination
if result.has_more:
    print("More results available")

# Access specific records
first_employee = result[0] if result else None

# List operations
senior_employees = [r for r in result if r.get('age', 0) > 30]

delete()

Deletes records matching a query.

Signature:

def delete(
    self,
    search_query: SearchQuery,
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • search_query (SearchQuery): Query to match records for deletion
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Delete records matching criteria
search_query = {
    "where": {
        "status": "inactive",
        "lastActive": {"$lt": "2023-01-01"}
    }
}

response = db.records.delete(search_query)

delete_by_id()

Deletes one or more records by ID.

Signature:

def delete_by_id(
    self,
    id_or_ids: Union[str, List[str]],
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • id_or_ids (Union[str, List[str]]): Single ID or list of IDs to delete
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Delete single record
response = db.records.delete_by_id("record-123")

# Delete multiple records
response = db.records.delete_by_id([
    "record-123",
    "record-456",
    "record-789"
])

attach()

Creates relationships between records.

Signature:

def attach(
    self,
    source: Union[str, Dict[str, Any]],
    target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]],
    options: Optional[RelationshipOptions] = None,
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • source (Union[str, Dict[str, Any]]): Source record ID or data
  • target (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
  • options (Optional[RelationshipOptions]): Relationship options
    • direction (Optional[Literal["in", "out"]]): Relationship direction
    • type (Optional[str]): Relationship type
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Create relationship between records
options = RelationshipOptions(
    type="HAS_EMPLOYEE",
    direction="out"
)

response = db.records.attach(
    source="company-123",
    target=["employee-456", "employee-789"],
    options=options
)

detach()

Removes relationships between records.

Signature:

def detach(
    self,
    source: Union[str, Dict[str, Any]],
    target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]],
    options: Optional[RelationshipDetachOptions] = None,
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • source (Union[str, Dict[str, Any]]): Source record ID or data
  • target (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
  • options (Optional[RelationshipDetachOptions]): Detach options
    • direction (Optional[Literal["in", "out"]]): Relationship direction
    • typeOrTypes (Optional[Union[str, List[str]]]): Relationship type(s)
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Remove relationships between records
options = RelationshipDetachOptions(
    typeOrTypes=["HAS_EMPLOYEE", "MANAGES"],
    direction="out"
)

response = db.records.detach(
    source="company-123",
    target="employee-456",
    options=options
)

import_csv()

Imports records from CSV data.

Signature:

def import_csv(
    self,
    label: str,
    data: str,
    options: Optional[Dict[str, bool]] = None,
    transaction: Optional[Transaction] = None
) -> List[Dict[str, Any]]

Arguments:

  • label (str): Label for imported records
  • data (Union[str, bytes]): CSV data to import
  • options (Optional[Dict[str, bool]]): Import options
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • List[Dict[str, Any]]: Imported records data

Example:

# Import records from CSV
data = """name,age,department,role
John Doe,30,Engineering,Senior Engineer
Jane Smith,28,Product,Product Manager
Bob Wilson,35,Engineering,Tech Lead"""

records = db.records.import_csv(
    label="EMPLOYEE",
    data=data,
    options={"returnResult": True, "suggestTypes": True}
)

Record Class Documentation

The Record class represents a record in RushDB and provides methods for manipulating individual records, including updates, relationships, and deletions.

Class Definition

class Record:
    def __init__(self, client: "RushDB", data: Union[Dict[str, Any], None] = None)

Properties

id

Gets the record's unique identifier.

Type: str

Example:

record = db.records.create("USER", {"name": "John"})
print(record.id)  # e.g., "1234abcd-5678-..."

proptypes

Gets the record's property types.

Type: str

Example:

record = db.records.create("USER", {"name": "John", "age": 25})
print(record.proptypes)  # Returns property type definitions

label

Gets the record's label.

Type: str

Example:

record = db.records.create("USER", {"name": "John"})
print(record.label)  # "USER"

timestamp

Gets the record's creation timestamp from its ID.

Type: int

Example:

record = db.records.create("USER", {"name": "John"})
print(record.timestamp)  # Unix timestamp in milliseconds

date

Gets the record's creation date.

Type: datetime

Example:

record = db.records.create("USER", {"name": "John"})
print(record.date)  # datetime object

Methods

set()

Updates all data for the record.

Signature:

def set(
    self,
    data: Dict[str, Any],
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • data (Dict[str, Any]): New record data
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

record = db.records.create("USER", {"name": "John"})
response = record.set({
    "name": "John Doe",
    "email": "john@example.com",
    "age": 30
})

update()

Updates specific fields of the record.

Signature:

def update(
    self,
    data: Dict[str, Any],
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • data (Dict[str, Any]): Partial record data to update
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

record = db.records.create("USER", {
    "name": "John",
    "email": "john@example.com"
})
response = record.update({
    "email": "john.doe@example.com"
})

attach()

Creates relationships with other records.

Signature:

def attach(
    self,
    target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], "Record", List["Record"]],
    options: Optional[RelationshipOptions] = None,
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • target (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
  • options (Optional[RelationshipOptions]): Relationship options
    • direction (Optional[Literal["in", "out"]]): Relationship direction
    • type (Optional[str]): Relationship type
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Create two records
user = db.records.create("USER", {"name": "John"})
group = db.records.create("GROUP", {"name": "Admins"})

# Attach user to group
response = user.attach(
    target=group,
    options=RelationshipOptions(
        type="BELONGS_TO",
        direction="out"
    )
)

detach()

Removes relationships with other records.

Signature:

def detach(
    self,
    target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], "Record", List["Record"]],
    options: Optional[RelationshipDetachOptions] = None,
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • target (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
  • options (Optional[RelationshipDetachOptions]): Detach options
    • direction (Optional[Literal["in", "out"]]): Relationship direction
    • typeOrTypes (Optional[Union[str, List[str]]]): Relationship type(s)
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

# Detach user from group
response = user.detach(
    target=group,
    options=RelationshipDetachOptions(
        typeOrTypes="BELONGS_TO",
        direction="out"
    )
)

delete()

Deletes the record.

Signature:

def delete(
    self,
    transaction: Optional[Transaction] = None
) -> Dict[str, str]

Arguments:

  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Dict[str, str]: Response data

Example:

user = db.records.create("USER", {"name": "John"})
response = user.delete()

Complete Usage Example

Here's a comprehensive example demonstrating various Record operations:

# Create a new record
user = db.records.create("USER", {
    "name": "John Doe",
    "email": "john@example.com",
    "age": 30
})

# Access properties
print(f"Record ID: {user.id}")
print(f"Label: {user.label}")
print(f"Created at: {user.date}")

# Update record data
user.update({
    "age": 31,
    "title": "Senior Developer"
})

# Create related records
department = db.records.create("DEPARTMENT", {
    "name": "Engineering"
})

project = db.records.create("PROJECT", {
    "name": "Secret Project"
})

# Create relationships
user.attach(
    target=department,
    options=RelationshipOptions(
        type="BELONGS_TO",
        direction="out"
    )
)

user.attach(
    target=project,
    options=RelationshipOptions(
        type="WORKS_ON",
        direction="out"
    )
)

# Remove relationship
user.detach(
    target=project,
    options=RelationshipDetachOptions(
        typeOrTypes="WORKS_ON",
        direction="out"
    )
)

# Delete record
user.delete()

Working with Transactions

Records can be manipulated within transactions for atomic operations:

# Start a transaction
with db.transactions.begin() as transaction:
    # Create user
    user = db.records.create(
        "USER",
        {"name": "John Doe"},
        transaction=transaction
    )

    # Update user
    user.update(
        {"status": "active"},
        transaction=transaction
    )

    # Create and attach department
    dept = db.records.create(
        "DEPARTMENT",
        {"name": "Engineering"},
        transaction=transaction
    )

    user.attach(
        target=dept,
        options=RelationshipOptions(type="BELONGS_TO"),
        transaction=transaction
    )

    # Transaction will automatically commit if no errors occur
    # If an error occurs, it will automatically rollback

PropertiesAPI Documentation

The PropertiesAPI class provides methods for managing and querying properties in RushDB.

Class Definition

class PropertiesAPI(BaseAPI):

Methods

find()

Retrieves a list of properties based on optional search criteria.

Signature:

def find(
    self,
    search_query: Optional[SearchQuery] = None,
    transaction: Optional[Transaction] = None
) -> List[Property]

Arguments:

  • query (Optional[SearchQuery]): Search query parameters for filtering properties
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • List[Property]: List of properties matching the search criteria

Example:

# Find all properties
properties = db.properties.find()

# Find properties with specific criteria
query = {
    "where": {
        "name": {"$startsWith": "user_"},  # Properties starting with 'user_'
        "type": "string"  # Only string type properties
    },
    "limit": 10  # Limit to 10 results
}
filtered_properties = db.properties.find(query)

find_by_id()

Retrieves a specific property by its ID.

Signature:

def find_by_id(
    self,
    property_id: str,
    transaction: Optional[Transaction] = None
) -> Property

Arguments:

  • property_id (str): Unique identifier of the property
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • Property: Property details

Example:

# Retrieve a specific property by ID
property_details = db.properties.find_by_id("prop_123456")

delete()

Deletes a property by its ID.

Signature:

def delete(
    self,
    property_id: str,
    transaction: Optional[Transaction] = None
) -> None

Arguments:

  • property_id (str): Unique identifier of the property to delete
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • None

Example:

# Delete a property
db.properties.delete("prop_123456")

values()

Retrieves values for a specific property with optional sorting and pagination.

Signature:

def values(
    self,
    property_id: str,
    sort: Optional[Literal["asc", "desc"]] = None,
    skip: Optional[int] = None,
    limit: Optional[int] = None,
    transaction: Optional[Transaction] = None
) -> PropertyValuesData

Arguments:

  • property_id (str): Unique identifier of the property
  • sort (Optional[Literal["asc", "desc"]]): Sort order of values
  • skip (Optional[int]): Number of values to skip (for pagination)
  • limit (Optional[int]): Maximum number of values to return
  • transaction (Optional[Transaction]): Optional transaction object

Returns:

  • PropertyValuesData: Property values data, including optional min/max and list of values

Example:

# Get property values
values_data = db.properties.values(
    property_id="prop_age",
    sort="desc",  # Sort values in descending order
    skip=0,       # Start from the first value
    limit=100     # Return up to 100 values
)

# Access values
print(values_data.get('values', []))  # List of property values
print(values_data.get('min'))         # Minimum value (for numeric properties)
print(values_data.get('max'))         # Maximum value (for numeric properties)

Comprehensive Usage Example

# Find all properties
all_properties = db.properties.find()
for prop in all_properties:
    print(f"Property ID: {prop['id']}")
    print(f"Name: {prop['name']}")
    print(f"Type: {prop['type']}")
    print(f"Metadata: {prop.get('metadata', 'No metadata')}")
    print("---")

# Detailed property search
query = {
    "where": {
        "type": "number",             # Only numeric properties
        "name": {"$contains": "score"}  # Properties with 'score' in name
    },
    "limit": 5  # Limit to 5 results
}
numeric_score_properties = db.properties.find(query)

# Get values for a specific property
if numeric_score_properties:
    first_prop = numeric_score_properties[0]
    prop_values = db.properties.values(
        property_id=first_prop['id'],
        sort="desc",
        limit=50
    )
    print(f"Values for {first_prop['name']}:")
    print(f"Min: {prop_values.get('min')}")
    print(f"Max: {prop_values.get('max')}")

    # Detailed property examination
    detailed_prop = db.properties.find_by_id(first_prop['id'])
    print("Detailed Property Info:", detailed_prop)

Property Types and Structures

RushDB supports the following property types:

  • "boolean": True/False values
  • "datetime": Date and time values
  • "null": Null/empty values
  • "number": Numeric values
  • "string": Text values

Property Structure Example

property = {
    "id": "prop_unique_id",
    "name": "user_score",
    "type": "number",
    "metadata": Optional[str]  # Optional additional information
}

property_with_value = {
    "id": "prop_unique_id",
    "name": "user_score",
    "type": "number",
    "value": 95.5  # Actual property value
}

Transactions

Properties API methods support optional transactions for atomic operations:

# Using a transaction
with db.transactions.begin() as transaction:
    # Perform multiple property-related operations
    property_to_delete = db.properties.find(
        {"where": {"name": "temp_property"}},
        transaction=transaction
    )[0]

    db.properties.delete(
        property_id=property_to_delete['id'],
        transaction=transaction
    )
    # Transaction will automatically commit if no errors occur

Error Handling

When working with the PropertiesAPI, be prepared to handle potential errors:

try:
    # Attempt to find or delete a property
    property_details = db.properties.find_by_id("non_existent_prop")
except RushDBError as e:
    print(f"Error: {e}")
    print(f"Error Details: {e.details}")