forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_pt_cub-.py
226 lines (203 loc) · 7.48 KB
/
eval_pt_cub-.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import time
import logging
from common.logger_utils import initialize_logging
from pytorch.model_stats import measure_model
from pytorch.cub200_2011_utils1 import add_dataset_parser_arguments, get_val_data_loader
from pytorch.utils import prepare_pt_context, prepare_model, calc_net_weight_count, AverageMeter
# from pytorch.utils import validate
from pytorch.utils import validate1
def parse_args():
parser = argparse.ArgumentParser(
description='Evaluate a model for image classification (PyTorch/CUB-200-2011)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
add_dataset_parser_arguments(parser)
parser.add_argument(
'--model',
type=str,
required=True,
help='type of model to use. see model_provider for options.')
parser.add_argument(
'--use-pretrained',
action='store_true',
help='enable using pretrained model from github.')
parser.add_argument(
'--resume',
type=str,
default='',
help='resume from previously saved parameters if not None')
parser.add_argument(
'--calc-flops',
dest='calc_flops',
action='store_true',
help='calculate FLOPs')
parser.add_argument(
'--calc-flops-only',
dest='calc_flops_only',
action='store_true',
help='calculate FLOPs without quality estimation')
parser.add_argument(
'--remove-module',
action='store_true',
help='enable if stored model has module')
parser.add_argument(
'--num-gpus',
type=int,
default=0,
help='number of gpus to use.')
parser.add_argument(
'-j',
'--num-data-workers',
dest='num_workers',
default=4,
type=int,
help='number of preprocessing workers')
parser.add_argument(
'--batch-size',
type=int,
default=32,
help='training batch size per device (CPU/GPU).')
parser.add_argument(
'--save-dir',
type=str,
default='',
help='directory of saved models and log-files')
parser.add_argument(
'--logging-file-name',
type=str,
default='train.log',
help='filename of training log')
parser.add_argument(
'--log-packages',
type=str,
default='torch, torchvision',
help='list of python packages for logging')
parser.add_argument(
'--log-pip-packages',
type=str,
default='',
help='list of pip packages for logging')
args = parser.parse_args()
return args
# def test(net,
# val_data,
# use_cuda,
# input_image_size,
# in_channels,
# calc_weight_count=False,
# calc_flops=False,
# calc_flops_only=True,
# extended_log=False):
# if not calc_flops_only:
# acc_top1 = AverageMeter()
# acc_top5 = AverageMeter()
# tic = time.time()
# err_top1_val, err_top5_val = validate(
# acc_top1=acc_top1,
# acc_top5=acc_top5,
# net=net,
# val_data=val_data,
# use_cuda=use_cuda)
# if extended_log:
# logging.info('Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})'.format(
# top1=err_top1_val, top5=err_top5_val))
# else:
# logging.info('Test: err-top1={top1:.4f}\terr-top5={top5:.4f}'.format(
# top1=err_top1_val, top5=err_top5_val))
# logging.info('Time cost: {:.4f} sec'.format(
# time.time() - tic))
#
# if calc_weight_count:
# weight_count = calc_net_weight_count(net)
# if not calc_flops:
# logging.info('Model: {} trainable parameters'.format(weight_count))
# if calc_flops:
# num_flops, num_macs, num_params = measure_model(net, in_channels, input_image_size)
# assert (not calc_weight_count) or (weight_count == num_params)
# stat_msg = "Params: {params} ({params_m:.2f}M), FLOPs: {flops} ({flops_m:.2f}M)," \
# " FLOPs/2: {flops2} ({flops2_m:.2f}M), MACs: {macs} ({macs_m:.2f}M)"
# logging.info(stat_msg.format(
# params=num_params, params_m=num_params / 1e6,
# flops=num_flops, flops_m=num_flops / 1e6,
# flops2=num_flops / 2, flops2_m=num_flops / 2 / 1e6,
# macs=num_macs, macs_m=num_macs / 1e6))
def test(net,
val_data,
use_cuda,
input_image_size,
in_channels,
calc_weight_count=False,
calc_flops=False,
calc_flops_only=True,
extended_log=False):
if not calc_flops_only:
accuracy_metric = AverageMeter()
tic = time.time()
err_val = validate1(
accuracy_metric=accuracy_metric,
net=net,
val_data=val_data,
use_cuda=use_cuda)
if extended_log:
logging.info('Test: err={err:.4f} ({err})'.format(
err=err_val))
else:
logging.info('Test: err={err:.4f}'.format(
err=err_val))
logging.info('Time cost: {:.4f} sec'.format(
time.time() - tic))
if calc_weight_count:
weight_count = calc_net_weight_count(net)
if not calc_flops:
logging.info('Model: {} trainable parameters'.format(weight_count))
if calc_flops:
num_flops, num_macs, num_params = measure_model(net, in_channels, input_image_size)
assert (not calc_weight_count) or (weight_count == num_params)
stat_msg = "Params: {params} ({params_m:.2f}M), FLOPs: {flops} ({flops_m:.2f}M)," \
" FLOPs/2: {flops2} ({flops2_m:.2f}M), MACs: {macs} ({macs_m:.2f}M)"
logging.info(stat_msg.format(
params=num_params, params_m=num_params / 1e6,
flops=num_flops, flops_m=num_flops / 1e6,
flops2=num_flops / 2, flops2_m=num_flops / 2 / 1e6,
macs=num_macs, macs_m=num_macs / 1e6))
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
use_cuda, batch_size = prepare_pt_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
use_cuda=use_cuda,
remove_module=args.remove_module)
if hasattr(net, 'module'):
input_image_size = net.module.in_size[0] if hasattr(net.module, 'in_size') else args.input_size
else:
input_image_size = net.in_size[0] if hasattr(net, 'in_size') else args.input_size
val_data = get_val_data_loader(
dataset_dir=args.data_dir,
batch_size=batch_size,
num_workers=args.num_workers,
input_image_size=input_image_size,
resize_inv_factor=args.resize_inv_factor)
assert (args.use_pretrained or args.resume.strip() or args.calc_flops_only)
test(
net=net,
val_data=val_data,
use_cuda=use_cuda,
# calc_weight_count=(not log_file_exist),
input_image_size=(input_image_size, input_image_size),
in_channels=args.in_channels,
calc_weight_count=True,
calc_flops=args.calc_flops,
calc_flops_only=args.calc_flops_only,
extended_log=True)
if __name__ == '__main__':
main()