Skip to content

Latest commit

 

History

History
133 lines (77 loc) · 5.42 KB

index.md

File metadata and controls

133 lines (77 loc) · 5.42 KB
layout
default

Fork me on GitHub

Drawing

Topics

Exam Week Schedule

  • Office Hours: Mon 5/15 1pm-4pm
  • Office Hours: Tue 5/16 9am-12pm and 1pm-2pm. Only sporadic access to Slack until Midterm III.
  • Midterm III: Fri 5/19 7pm-10pm in Warner 506
  • Office Hours: Sun 5/21 1pm-5pm
  • Office Hours: Mon 5/22 1pm-5pm
  • Final Project Due: Tue 5/23 12pm. See Final Project Guidelines.
  • Exit survey posted here.

4. Regression

  • Lec41 - Mon 5/15: Midterm III Review + Course Response Evals
  • Lec40 - Fri 5/12: Multiple Regression Part II
  • Lec39 - Thu 5/11: Multiple Regression
  • Lec38 - Wed 5/10: Categorical Predictors
  • Lec37 - Mon 5/8: Least-Squares Line + Regression Output
  • Lec36 - Thu 5/4: Correlation

3. Statistical Inference

c) Confidence Intervals

  • Lec35 - Wed 5/3: Confidence Intervals in General
  • Lec34 - Mon 5/1: Confidence Intervals
  • Lec33 - Fri 4/28: Sampling Distributions and Standard Errors
  • Lec32 - Thu 4/27: Back to Sampling
  • Lec31 - Wed 4/26: Background Statistical Theory

b) Hypothesis Testing

  • Lec30 - Mon 4/24: Finishing Hypothesis Testing
  • Lec29 - Thu 4/20: Permutation Test
  • Lec28 - Wed 4/19: Constructing the Null Hypothesis
  • Lec27 - Mon 4/17: Tying Hypothesis Testing with Sampling
  • Lec26 - Fri 4/14: p-Values
  • Lec25 - Thu 4/13: Hypothesis Testing Framework and Terminology
  • Lec24 - Wed 4/12: Going over Midterm II
  • Lec23 - Mon 4/10: Midterm II Review
  • Lec22 - Fri 4/7: Lady Tasting Tea

a) Probability Background

  • Lec21 - Thu 4/6: Confounding Variables and Designed Experiments
  • Lec20 - Wed 4/5: Introduction to Sampling
  • Lec19 - Mon 4/3: Intro to Probability via Simulation
  • Lec17 - Wed 3/22: Intro to Sampling Terminology

2. Data

e) Putting It All Together

  • Final Project: Guidelines.
  • Lec18 - Fri 3/24: The tao of data analysis.

d) Importing Data

c) Manipulation AKA Wrangling

  • Lec15 - Fri 3/17: 5MV#5 arrange() & _join
  • Lec14 - Thu 3/16: 5MV#3 group_by() & 5MV#4 mutate()
  • Lec13 - Wed 3/15: Piping %>%, 5MV#1 filter() & 5MV#2 summarize()
  • Lec12 - Mon 3/13: Intro to Data Wrangling + Intro to R Markdown

b) Visualization

  • Lec11 - Thu 3/9: 5NG#5 Barplots. We deconstruct boxplots i.e. geom_bar().
  • Lec10 - Mon 3/6: Midterm I Review
  • Lec09 - Thu 3/2: 5NG#4 Boxplots. We deconstruct boxplots i.e. geom_boxplot().
  • Lec08 - Wed 3/1: 5NG#3 Histograms + facets. We deconstruct histograms i.e. geom_histogram() + We introduce the technique of faceting.
  • Lec07 - Mon 2/27: 5NG#2 Linegraphs. We deconstruct linegraphs i.e. geom_line().
  • Lec06 - Fri 2/24: 5NG#1 Scatterplots. We deconstruct scatterplots i.e. geom_point().
  • Lec05 - Thu 2/23: More 5NG. Instead of reverse engineering graphics using the grammar, we now forward engineer them.
  • Lec04 - Wed 2/22: 5NG. Constructing statistical graphics in a 'grammatical' fashion and introducing the Five Named Graphs.

a) Representation

  • Lec03 - Mon 2/20: Tidy Data. A common way of representing data

1. Introduction & Tools

  • Lec02 - Thu 2/16: R Packages. Extending R's base functionality with packages.
  • Lec01 - Mon 2/13: Introduction. We discuss the syllabus, the pedogical thinking behind its design and introduce R, RStudio, and DataCamp.