Skip to content

Latest commit

 

History

History
430 lines (321 loc) · 16.4 KB

INSTALL.md

File metadata and controls

430 lines (321 loc) · 16.4 KB

AliceVision

Build instructions

Required tools:

  • CMake >= 3.11
  • Git
  • C/C++ compiler (gcc or visual studio or clang) with C++14 support (i.e. gcc >= 5, clang >= 3.4, msvc >= 19.10, cuda >= 9.0).

Compile the project

Getting the sources:

git clone https://github.com/alicevision/AliceVision.git --recursive

As AliceVision use some C++11 features you must have a c++11 ready compiler:

  • Visual studio >= 2015 (English language pack required for vcpkg)
  • GCC >= 4.7
  • Clang >= 3.3

Dependencies

AliceVision depends on external libraries:

Other optional libraries can enable specific features (check "CMake Options" for enabling them):

  • Alembic (data I/O)
  • CCTag (feature extraction/matching and localization on CPU or GPU)
  • Cuda >= 7.0 (feature extraction and depth map computation)
  • Magma (required for UncertaintyTE)
  • Mosek >= 5 (linear programming)
  • OpenCV >= 3.4.11 (feature extraction, calibration module, video IO), >= 4.5 for colorchecker (mcc)
  • OpenGV (rig calibration and localization)
  • OpenMP (enable multi-threading)
  • PopSift (feature extraction on GPU)
  • UncertaintyTE (Uncertainty computation)

AliceVision also depends on some embedded libraries:

  • CoinUtils >= 2.9.3 (internal)
  • Coin-or linear programming (Clp) (internal)
  • Flann >= 1.8.4 (internal)
  • Lemon >= 1.3 (internal)
  • MeshSDFilter (internal)
  • OpenMesh (internal)
  • Open Solver Interface (Osi) >= 0.106.10 (internal)

Building the project using vcpkg (recommended on Windows)

Vcpkg is a tool that helps in acquiring, building, and managing C/C++ libraries. AliceVision's required dependencies can be built with it. Follow the installation guide to setup vcpkg.

Note: while started as a Windows only project, vcpkg recently became cross-platform. In the scope of AliceVision, it has only been tested on Windows.

To build AliceVision using vcpkg:

  1. Setup the environment

Windows: CUDA and Visual Studio

  • CUDA >= 10.0 CUDA 10.0 is fully compatible with Visual Studio 2017 (Update 8) which allows to use the most recent compiler toolset (v141) to build AliceVision and its dependencies. VS2015 can also be used in this configuration. This requires a recent version of CMake (tested with 3.12).

  • CUDA < 10.0 Due to incompatibilities between CUDA and Visual Studio 2017, Visual 2015 toolset must be used to build AliceVision. Visual Studio 2017 can be used as an IDE, but v140 toolset must be installed and used for this to work. To setup a VS2017 command prompt using the v140 toolset:

# Windows: CUDA < 10.0 + VS2017 v140 toolset
"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=14.0
nmake /version
# should print Version 14.00.xxx
  1. Build the required dependencies
cd <VCPKG_INSTALL_DIR>
set VCPKG_ROOT=%cd%

vcpkg install ^
          boost-algorithm boost-accumulators boost-atomic boost-container boost-date-time boost-exception boost-filesystem boost-graph boost-log ^
          boost-program-options boost-property-tree boost-ptr-container boost-regex boost-serialization boost-system boost-test boost-thread boost-timer ^
          lz4 ^
          openexr ^
          alembic ^
          geogram ^
          eigen3 ^
          opencv[eigen,ffmpeg,webp,contrib,nonFree,cuda] ^
          openimageio[libraw,ffmpeg,freetype,opencv,gif,openjpeg,webp] ^
          ceres[suitesparse,cxsparse] ^
          cuda ^
          tbb ^
          assimp ^
          --triplet x64-windows
  1. Build AliceVision
# With VCPKG_ROOT being the path to the root of vcpkg installation
cd /path/to/aliceVision/
mkdir build && cd build


# Windows: CUDA >= 10.0 + Visual 2022 + Powershell
cmake .. -DCMAKE_TOOLCHAIN_FILE="$env:VCPKG_ROOT"\scripts\buildsystems\vcpkg.cmake -DVCPKG_TARGET_TRIPLET=x64-windows -G "Visual Studio 17 2022" -A x64 -T host=x64

# Windows: CUDA >= 10.0 + Visual 2022
cmake .. -DCMAKE_TOOLCHAIN_FILE=%VCPKG_ROOT%\scripts\buildsystems\vcpkg.cmake -DVCPKG_TARGET_TRIPLET=x64-windows -G "Visual Studio 17 2022" -A x64 -T host=x64

# Windows: CUDA >= 10.0 + Visual 2017
cmake .. -DCMAKE_TOOLCHAIN_FILE=%VCPKG_ROOT%\scripts\buildsystems\vcpkg.cmake -DVCPKG_TARGET_TRIPLET=x64-windows -G "Visual Studio 15 2017" -A x64 -T host=x64

# Windows: CUDA < 10.0 + Visual 2017 v140 (Visual 2015 toolset)
cmake .. -DCMAKE_TOOLCHAIN_FILE=%VCPKG_ROOT%\scripts\buildsystems\vcpkg.cmake -DVCPKG_TARGET_TRIPLET=x64-windows -G "Visual Studio 15 2017" -A x64 -T v140,host=x64

# Windows: CUDA < 10.0 + Visual 2015
cmake .. -DCMAKE_TOOLCHAIN_FILE=%VCPKG_ROOT%\scripts\buildsystems\vcpkg.cmake -DVCPKG_TARGET_TRIPLET=x64-windows -G "Visual Studio 14 2015" -A x64 -T v140,host=x64

# Windows: this generates a "aliceVision.sln" solution inside the build folder

Building the project with embedded dependencies

git clone https://github.com/alicevision/AliceVision.git --recursive
mkdir build && cd build
cmake -DALICEVISION_BUILD_DEPENDENCIES=ON -DCMAKE_INSTALL_PREFIX=$PWD/../install ../AliceVision
make -j10
  • JPEG You need autoreconf, libtool and nasm to compile libturbo-jpeg. Else if you have jpeg already install on your OS, you can disable the JPEG build with -DAV_BUILD_JPEG=OFF.

  • PNG You need automake to compile libpng. Else if you have png already install on your OS, you can disable the PNG build with -DAV_BUILD_PNG=OFF.

Building the project using external dependencies

In order to build the library with existing versions of the dependencies (e.g. system installed libraries or user built libraries), and thus reduce the compilation time and favour the modularization, the paths where to find such libraries can be given at cmake command line. In particular:

  • For Ceres solver library, Ceres_DIR can be passed pointing to where CeresConfig.cmake can be found. e.g. -DCeres_DIR:PATH=/path/to/ceres/install/share/Ceres/

  • For FLANN library, FLANN_INCLUDE_DIR_HINTS can be passed pointing to the include directory, e.g. -DFLANN_INCLUDE_DIR_HINTS:PATH=/path/to/flann/1.8.4/include/

  • For Eigen library, CMAKE_MODULE_PATH should be passed pointing at the <EigenInstallDir>/share/cmake/Modules/ directory of the Eigen installation, in which Eigen-config.cmake or FindEigen3.cmake can be found. In case only FindEigen3.cmake is available (e.g. Homebrew installations), an environment variable EIGEN_ROOT_DIR must be set pointing at Eigen install directory. For example,

    -DCMAKE_MODULE_PATH:PATH=/usr/local/Cellar/eigen/3.3.4/share/cmake/Modules/

    may require to set the environment variable if only FindEigen3.cmake, i.e.

    export EIGEN_ROOT_DIR=/usr/local/Cellar/eigen/3.3.4/

  • For OpenEXR library, OPENEXR_HOME can be passed pointing to the install directory, e.g. -DOPENEXR_HOME:PATH=/path/to/openexr/install

  • For OpenImageIO library, library and include dir paths can be passed, e.g. -DOPENIMAGEIO_LIBRARY_DIR_HINTS:PATH=/path/to/oiio/install/lib/ and -DOPENIMAGEIO_INCLUDE_DIR:PATH=/path/to/oiio/install/include/

At the end of the cmake process, a report shows for each library which version (internal/external) will be used in the building process, e.g.:

-- EIGEN: 3.3.4
-- CERES: 1.10.0
-- FLANN: 1.8.4 (external)
-- CLP: 1.15.11 (internal)
-- COINUTILS: 2.9.3 (internal)
-- OSI: 0.106.10 (internal)
-- LEMON: 1.3 (internal)

CMake Options

  • GEOGRAM -DGEOGRAM_INSTALL_PREFIX:PATH=path/to/geogram/install

  • OPENIMAGEIO -DOPENIMAGEIO_LIBRARY_DIR_HINTS:PATH=/path/to/oiio/install/lib/ -DOPENIMAGEIO_INCLUDE_DIR:PATH=/path/to/oiio/install/include/

  • BOOST_NO_CXX11 (default OFF) If your Boost binaries are compiled without C++11 support, you need to set this option to avoid compilation errors. This is most likely to be the case if you use the system packages to install boost.

  • ALICEVISION_USE_OPENMP (default ON) Use OpenMP parallelization (huge impact on performances) OSX: if you are compiling with clang shipped with XCode, please note that OpenMP is not supported and you need to disable OpenMP passing -DALICEVISION_USE_OPENMP:BOOL=OFF.

  • ALICEVISION_USE_CCTAG (default: AUTO) Build with CCTag markers support. -DCCTag_DIR:PATH=/path/to/cctag/install/lib/cmake/CCTag (where CCTagConfig.cmake can be found)

  • ALICEVISION_USE_APRILTAG (default: AUTO) Build with AprilTag markers support. -Dapriltag_DIR:PATH=/path/to/apriltag/install/share/apriltag/cmake (where apriltagConfig.cmake can be found)

  • ALICEVISION_USE_OPENGV (default AUTO) Enable use of OpenGV algorithms. Build with openGV for multi-cameras localization. -DOPENGV_DIR:PATH=/path/to/opengv/install/ (where "include" and "lib" folders can be found) We recommend: git clone https://github.com/alicevision/opengv.git --branch=cmake_fix_install

  • ALICEVISION_USE_ALEMBIC (default AUTO) Build with Alembic file format support (required version >= 1.7). -DAlembic_DIR:PATH=/path/to/alembic/install/lib/cmake/Alembic/ (where AlembicConfig.cmake can be found) With old Alembic versions (<1.6), you need to set many variables: ALEMBIC_ROOT, ALEMBIC_HDF5_ROOT, ALEMBIC_ILMBASE_ROOT, ALEMBIC_OPENEXR_ROOT.

  • ALICEVISION_USE_OPENMP (default: AUTO) Enable OpenMP parallelization

  • ALICEVISION_USE_CUDA (default: ON) Enable build with CUDA (for feature extraction and depth map computation) -DCUDA_TOOLKIT_ROOT_DIR:PATH=/usr/local/cuda-9.1 (adjust the path to your cuda installation)

  • ALICEVISION_USE_POPSIFT (default: AUTO) Enable GPU SIFT implementation. -DPopSift_DIR:PATH=/path/to/popsift/install/lib/cmake/PopSift (where PopSiftConfig.cmake can be found)

  • ALICEVISION_USE_UNCERTAINTYTE (default: AUTO) Enable Uncertainty computation. -DUNCERTAINTYTE_DIR:PATH=/path/to/uncertaintyTE/install/ (where inlude and lib can be found) -DMAGMA_ROOT:PATH=/path/to/magma/install/ (where inlude and lib can be found)

  • ALICEVISION_USE_OPENCV (default: OFF) Build with openCV -DOpenCV_DIR:PATH=/path/to/opencv/install/share/OpenCV/ (where OpenCVConfig.cmake can be found)

  • ALICEVISION_REQUIRE_CERES_WITH_SUITESPARSE (default: ON) By default, aliceVision requires Ceres built with SuiteSparse to ensure best performances but you can make SuiteSparse optional with this flag.

  • BUILD_SHARED_LIBS (default ON) Build AliceVision as shared libs (instead of static libs)

  • ALICEVISION_BUILD_TESTS (default OFF) Build AliceVision tests

  • ALICEVISION_BUILD_DOC (default AUTO) Build AliceVision documentation

  • ALICEVISION_BUILD_EXAMPLES (default ON) Build AliceVision samples applications (aliceVision software are still built)

  • ALICEVISION_BUILD_COVERAGE (default OFF) Enable code coverage generation (gcc only)

Linux compilation

Setup the required external library.

  • sudo apt-get install libpng-dev libjpeg-dev libtiff-dev libxxf86vm1 libxxf86vm-dev libxi-dev libxrandr-dev

  • If you want see the view graph svg logs sudo apt-get install graphviz

Clone and configure the project:

 git clone --recursive https://github.com/alicevision/AliceVision.git
 mkdir build && cd build
 cmake -DCMAKE_BUILD_TYPE=Release . ../AliceVision

If you want enable unit tests and examples to the build:

cmake -DCMAKE_BUILD_TYPE=Release -DALICEVISION_BUILD_TESTS=ON -DALICEVISION_BUILD_EXAMPLES=ON ../AliceVision

In order to use the MOSEK 6 back-end for the linear programming aliceVision module:

  • Check that you have an up-to-date MOSEK licence, else aliceVision MOSEK unit test will fail.

  • Then:

    cmake -DCMAKE_BUILD_TYPE=Release \
          -DMOSEK_SEARCH_HEADER="~/Documents/Lib/mosek/6/tools/platform/linux64x86/h" \
          -DMOSEK_SEARCH_LIB="~/Documents/Lib/mosek/6/tools/platform/linux64x86/bin" \
          ../AliceVision

If you want to have an IDE openable project with codeblocks:

cmake -G "CodeBlocks - Unix Makefiles" -DCMAKE_BUILD_TYPE=Release ../AliceVision

Compile the project

make

For a multi-core compilation (Replace NBcore with the number of threads)

make -j NBcore

Launch unity tests (if asked at cmake step)

make test

Windows compilation

  • Checkout the project git clone --recursive https://github.com/alicevision/aliceVision.git
  • Open cmake-gui
    • Fill the source path with the AliceVision path.
    • Fill the build path with a new directory
    • Select your Visual Studio IDE and click configure and then generate
  • Open the .sln solution created in your build directory.
    • Change the target to Release.
    • Compile the libraries and binaries samples.

Mac OSX compilation

git clone --recursive https://github.com/alicevision/AliceVision.git
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -G "Xcode" ../AliceVision

If you want enable unit tests and examples to the build:

cmake -DCMAKE_BUILD_TYPE=Release \
      -DALICEVISION_BUILD_TESTS=ON \
      -DALICEVISION_BUILD_EXAMPLES=ON \
      -G "Xcode" \
      ../AliceVision
xcodebuild -configuration Release

Using AliceVision as a third party library dependency in cmake

AliceVision can be used as a third party once it have been installed. Consider using the CMAKE_INSTALL_PREFIX cmake variable to specify a local installation directory. Here the syntax to add the variable to the cmake command line (use absolute path), e.g.:

-DCMAKE_INSTALL_PREFIX="/home/user/dev/AliceVision_install"

Perform make and make install

Then you will be able to use AliceVision as an external library in your CMakeLists.txt using the modern CMake approach as imported target. For example, if your target main depends on the AliceVision module aliceVision_sfmDataIO:

find_package(AliceVision CONFIG REQUIRED)
message(STATUS "Found AliceVision : ${AliceVision_FOUND}")
message(STATUS "Found AliceVision version: ${AliceVision_VERSION}")
add_executable(main main.cpp)
target_link_libraries(main PUBLIC aliceVision_sfmDataIO)

In general, you need to specify the list of the AliceVision modules that your library or executable depends on.

Specify to CMake where AliceVision is installed by using the AliceVision_DIR cmake variable: -DAliceVision_DIR:PATH="YourInstallPath"/share/aliceVision/cmake or by simply adding the installation path to your CMAKE_PREFIX_PATH, i.e. -DCMAKE_PREFIX_PATH:PATH="YourInstallPath". Check the sample in samples for an example of use.

Docker image

A docker image can be built using the CentOS 7 or Ubuntu 18 Dockerfiles. The Dockerfiles are based on nvidia/cuda images (https://hub.docker.com/r/nvidia/cuda/)

docker build --tag alicevision:centos7-cuda7.0 .
docker build --tag alicevision:ubuntu18.04-cuda9.2 -f Dockerfile_ubuntu .

Parameters OS_TAG and CUDA_TAG can be passed to build the image with a specific OS and CUDA version. Use NPROC=8 to select the number of cores to use, 1 by default. For example, the first line of below's commands shows the example to create docker for a CentOS 7 with Cuda 9.2 and second line for Ubuntu 16.04 with Cuda 8.0:

docker build --build-arg OS_TAG=7 --build-arg CUDA_TAG=9.2 --tag alicevision:centos7-cuda9.2 .
docker build --build-arg OS_TAG=16.04 --build-arg CUDA_TAG=8.0 --build-arg NPROC=8 --tag alicevision:ubuntu16.04-cuda8.0 -f Dockerfile_ubuntu .

In order to run the image nvidia docker is needed.

docker run -it --runtime=nvidia alicevision:centos7-cuda9.2

To retrieve the generated files:

# Create an instance of the image, copy the files and remove the temporary docker instance.
CID=$(docker create alicevision:centos7-cuda9.2) && docker cp ${CID}:/opt/AliceVision_install . && docker cp ${CID}:/opt/AliceVision_bundle . && docker rm ${CID}