forked from ml-lab/DeepVideoAnalytics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdvactl
executable file
·337 lines (319 loc) · 13.1 KB
/
dvactl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env python
import argparse
import os
import json
import random
from deploy import compose, kube
import subprocess
try:
import requests
except ImportError:
print "Warning! requests module is required to use exec functionality."
def get_mode():
if not os.path.isfile("config.json"):
return configure()
return json.load(file("config.json"))
DEFAULT_KUBE_WORKERS = [
{'name': 'coco',
'worker_env': 'LAUNCH_BY_NAME_detector_coco',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "4000Mi"
},
{'name': 'crnn',
'worker_env': 'LAUNCH_BY_NAME_analyzer_crnn',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "4000Mi"
},
{'name': 'extractor',
'worker_env': 'LAUNCH_Q_qextract',
'max_cpu': 1,
'request_cpu': 1,
'request_memory': "1000Mi",
'max_memory': "10000Mi"
},
{'name': 'face',
'worker_env': 'LAUNCH_BY_NAME_detector_face',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "4000Mi"
},
{'name': 'facenet',
'worker_env': 'LAUNCH_BY_NAME_indexer_facenet',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "4000Mi"
},
{'name': 'globalmodel',
'worker_env': 'LAUNCH_Q_GLOBAL_MODEL',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "8000Mi"
},
{'name': 'globalretriever',
'worker_env': 'LAUNCH_Q_GLOBAL_RETRIEVER',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "80000Mi"
},
{'name': 'inception',
'worker_env': 'LAUNCH_BY_NAME_indexer_inception',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "6000Mi"
},
{'name': 'retinception',
'worker_env': 'LAUNCH_BY_NAME_retriever_inception',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "80000Mi"
},
{'name': 'streamer',
'worker_env': 'LAUNCH_Q_qstreamer',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "500Mi",
'max_memory': "4000Mi"
},
{'name': 'tagger',
'worker_env': 'LAUNCH_BY_NAME_analyzer_tagger',
'max_cpu': 4,
'request_cpu': 1,
'request_memory': "2000Mi",
'max_memory': "4000Mi"
},
{'name': 'textbox',
'worker_env': 'LAUNCH_BY_NAME_detector_textbox',
'max_cpu': 8,
'request_cpu': 1,
'request_memory': "3000Mi",
'max_memory': "8000Mi"
},
{'name': 'trainer',
'worker_env': 'LAUNCH_Q_qtrainer',
'max_cpu': 8,
'request_cpu': 1,
'request_memory': "3000Mi",
'max_memory': "8000Mi"
},
]
GPU_CONFIG = {
1: {
"compose_filename": "deploy/compose/docker-compose-1-gpus.yml",
"config": {"global_model_gpu_id": 0,
"global_model_memory_fraction": 0.05,
"workers":
[(0, 0, "LAUNCH_BY_NAME_indexer_inception", "inception"),
(0, 0.1, "LAUNCH_BY_NAME_analyzer_crnn", "crnn"),
(0, 0.4, "LAUNCH_BY_NAME_detector_coco", "coco"),
(0, 0.4, "LAUNCH_BY_NAME_detector_textbox", "textbox"),
(0, 0, "LAUNCH_BY_NAME_detector_face", "face"),
(0, 0, "LAUNCH_BY_NAME_indexer_facenet", "facenet"),
(0, 0, "LAUNCH_BY_NAME_analyzer_tagger", "tagger")]
}},
2: {
"compose_filename": "deploy/compose/docker-compose-2-gpus.yml",
"config": {"global_model_gpu_id": 0,
"global_model_memory_fraction": 0.1,
"workers":
[(0, 0.25, "LAUNCH_BY_NAME_indexer_inception", "inception"),
(0, 0.2, "LAUNCH_BY_NAME_analyzer_crnn", "crnn"),
(0, 0.5, "LAUNCH_BY_NAME_detector_coco", "coco"),
(1, 0.5, "LAUNCH_BY_NAME_detector_textbox", "textbox"),
(1, 0.19, "LAUNCH_BY_NAME_detector_face", "face"),
(1, 0.15, "LAUNCH_BY_NAME_indexer_facenet", "facenet"),
(1, 0.15, "LAUNCH_BY_NAME_analyzer_tagger", "tagger")]
}},
4: {
"compose_filename": "deploy/compose/docker-compose-4-gpus.yml",
"config": {"global_model_gpu_id": 2,
"global_model_memory_fraction": 0.29,
"workers":
[(0, 0.3, "LAUNCH_BY_NAME_indexer_inception", "inception"),
(0, 0.4, "LAUNCH_BY_NAME_analyzer_tagger", "tagger"),
(0, 0.2, "LAUNCH_BY_NAME_analyzer_crnn", "crnn"),
(1, 1.0, "LAUNCH_BY_NAME_detector_coco", "coco"),
(2, 0.7, "LAUNCH_BY_NAME_detector_face", "face"),
(3, 0.5, "LAUNCH_BY_NAME_detector_textbox", "textbox"),
(3, 0.45, "LAUNCH_BY_NAME_indexer_facenet", "facenet")
]
}}
}
def configure_kube():
config_template = {
"dbusername": "pguser",
"dbpassword": "pgpass",
"rabbithost": "rbbit",
"rabbitusername": "rabbituser",
"rabbitpassword": "rabbitpass",
"awskey": "none",
"awssecret": "none",
"mediabucket": "dvamedia_{random_string}",
"secretkey": "{random_string}",
"superuser": "admin",
"namespace": "nsdva",
"superpass": "please_change_this",
"superemail": "admin@test.com",
"cloudfsprefix": "gs",
"cors_origin": "*",
"redishost": "redis-master",
"redispassword": "1234567890",
"zone": "us-west1-b",
"cluster_name": "dvacluster",
"machine_type": "custom-22-84480",
"nodes": 1,
"disk_size":100,
"branch": "stable",
"workers": DEFAULT_KUBE_WORKERS
}
config = {"mode": "kube"}
print "Creating configuration for kubernetes from kubeconfig.example.json"
if os.path.isfile('config.json'):
existing_config = json.load(file('config.json'))
if existing_config['mode'] != 'kube':
existing_config = {}
else:
print "Existing config.json found loading values from it."
else:
existing_config = {}
for k, v in sorted(config_template.items()):
if k in existing_config:
v = existing_config[k]
if k != "workers":
if (type(v) is str or type(v) is unicode) and "{random_string}" in v:
v = v.format(random_string=random.randint(0, 100000000))
new_value = raw_input(
"Enter value for {} (Current value is '{}' press enter to keep current value) >>".format(k, v))
if new_value.strip():
if type(v) is int:
config[k] = int(new_value)
else:
config[k] = new_value
else:
config[k] = v
else:
config[k] = v
print "worker configurations are stored in config.json"
return config
def configure_compose(mode):
gpu_count = 0
init_process = '/root/DVA/configs/custom_defaults/init_process.json'
init_models = '/root/DVA/configs/custom_defaults/trained_models.json'
process = raw_input("Please specify init process or press enter to keep default"
" ( /root/DVA/configs/custom_defaults/init_process.json ) >>").strip()
if process.strip():
init_process = process
models = raw_input("Please specify default models or press enter to keep default"
" ( /root/DVA/configs/custom_defaults/trained_models.json ) >>").strip()
if process.strip():
init_models = models
envs = {}
gpu_compose_filename = None
gpu_config = None
if os.path.isfile(os.path.expanduser('~/aws.env')):
envs.update(compose.load_envs(os.path.expanduser('~/aws.env')))
print '~/aws.env found. writing credentials to config.json'
else:
print '{} not found. not passing AWS creds. Please create ~/aws.env with AWS_ACCESS_KEY_ID ' \
'and AWS_SECRET_ACCESS_KEY or manually ' \
'add them to credentials in config.json'.format(os.path.expanduser('~/aws.env'))
if os.path.isfile(os.path.expanduser('~/do.env')):
envs.update(compose.load_envs(os.path.expanduser('~/do.env')))
print '~/do.env found. writing credentials to config.json'
else:
print '{} not found. not passing Digital Ocean creds.'.format(os.path.expanduser('~/do.env'))
if mode == 'gpu':
gpu_count = int(raw_input("Please select number of GPUs >>").strip())
gpu_compose_filename = GPU_CONFIG[gpu_count]['compose_filename']
gpu_config = GPU_CONFIG[gpu_count]['config']
print "Memory fraction and gpu allocation for individual workers has been written to config.json, please edit" \
"the file to optionally specify custom allocation"
return {"mode": mode, 'gpus': gpu_count, 'init_process': init_process, 'init_models': init_models,
'credentials': envs, 'gpu_compose_filename': gpu_compose_filename, 'gpu_config': gpu_config}
def configure(mode=None):
if mode is None or not mode:
mode = raw_input("Please select mode { dev, cpu, gpu, kube } >>").strip()
if mode not in {'dev', 'cpu', 'gpu', 'kube'}:
raise ValueError("{} is not a valid mode".format(mode))
if mode == 'kube':
mode_dict = configure_kube()
else:
mode_dict = configure_compose(mode)
with open("config.json", 'w') as f:
json.dump(mode_dict, f, indent=4)
print "Saved config.json"
return mode_dict
def exec_script(script_path):
creds = json.load(file('creds.json'))
server, token = creds['server'], creds['token']
headers = {'Authorization': 'Token {}'.format(token)}
r = requests.post("{server}queries/".format(server=server), data={'script': file(script_path).read()},
headers=headers)
r.raise_for_status()
if r.ok:
print r.json()
if __name__ == '__main__':
help_text = """
Available options
./dvactl configure
./dvactl create
./dvactl create_premptible # create premptible node pool for Kubernetes
./dvactl start
./dvactl auth # recreates creds.json
./dvactl exec -f script.json # run process using creds.json and REST API
./dvactl shell --container (container default:webserver) --pod (default:empty) # enter into a shell
./dvactl stop
./dvactl clean
"""
parser = argparse.ArgumentParser()
parser.add_argument("action",
help="Select action out of { configure | create | start | auth | exec | stop | clean "
"| clean_restart ")
parser.add_argument("-f", help="path to script to exec, e.g. process_livestream.json",
default="")
parser.add_argument("--container", help="Container to enter shell into",
default="webserver")
parser.add_argument("--pod", help="Pod to enter shell into (required for ./dvactl shell when running in kube mode)",
default="")
args = parser.parse_args()
if args.action == 'configure':
configure()
elif args.action == 'exec':
if args.f.strip():
exec_script(args.f)
else:
raise ValueError("Please specify script path e.g. ./dvactl exec -f test.json")
else:
mode_dict = get_mode()
if mode_dict['mode'] == 'kube':
kube.handle_kube_operations(args)
else:
if args.action == 'create':
raise ValueError("create is not required for compose, its used in kube mdoe to create GKE cluster")
elif args.action == 'shell':
containers = {line.strip().split()[-1] for line in
subprocess.check_output(['docker','ps']).splitlines()
if line.strip() and not line.strip().endswith('NAMES')}
if args.container in containers:
print "Starting shell into container {}".format(args.container)
command = " ".join(['docker','exec','-u="root"','-it',args.container,'bash'])
print command
# This is not safe and vulnerable to code execution on host, use only for interactive debugging.
os.system(command)
else:
raise ValueError("{} is not in list of currently running containers {}".format(args.container,
list(containers)))
else:
compose.handle_compose_operations(args, mode_dict['mode'], mode_dict['gpus'], mode_dict['init_process'],
mode_dict['init_models'], mode_dict['credentials'],
gpu_compose_filename=mode_dict['gpu_compose_filename'],
gpu_config=mode_dict['gpu_config'])