-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathname_cleaning.Rmd.og
173 lines (130 loc) · 5.31 KB
/
name_cleaning.Rmd.og
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
title: Strategies for programmatic name cleaning
author: Scott Chamberlain
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Strategies for programmatic name cleaning}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r echo=FALSE}
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true")
knitr::opts_chunk$set(
comment = "#>",
collapse = TRUE,
warning = FALSE,
message = FALSE,
purl = NOT_CRAN,
eval = NOT_CRAN
)
```
`taxize` offers interactive prompts when using `get_*()` functions (e.g., `get_tsn()`).
These prompts make it easy in interactive use to select choices when there are more
than one match found.
However, to make your code reproducible you don't want interactive prompts.
This vignette covers some options for programmatic name cleaning.
```{r}
library("taxize")
```
## get_* functions
When using `get_*()` functions programatically, you have a few options.
### rows parameter
Normally, if you get more than one result, you get a prompt asking you
to select which taxon you want.
```{r eval=FALSE}
get_tsn("Quercus b")
#> tsn target commonnames nameusage
#> 1 19298 Quercus beebiana not accepted
#> 2 507263 Quercus berberidifolia scrub oak accepted
#> 3 19300 Quercus bicolor swamp white oak accepted
#> 4 19303 Quercus borealis not accepted
#> 5 195131 Quercus borealis var. maxima not accepted
#> 6 195166 Quercus boyntonii Boynton's sand post oak accepted
#> 7 506533 Quercus brantii Brant's oak accepted
#> 8 195150 Quercus breviloba not accepted
#> 9 195099 Quercus breweri not accepted
#> 10 195168 Quercus buckleyi Texas oak accepted
#>
#> More than one TSN found for taxon 'Quercus b'!
#>
#> Enter rownumber of taxon (other inputs will return 'NA'):
#>
#> 1:
```
Instead, we can use the rows parameter to specify which records we want
by number only (not by a name itself). Here, we want the first 3 records:
```{r eval=FALSE}
get_tsn('Quercus b', rows = 1:3)
#> tsn target commonnames nameusage
#> 1 19298 Quercus beebiana not accepted
#> 2 19300 Quercus bicolor swamp white oak accepted
#> 3 19303 Quercus borealis not accepted
#>
#> More than one TSN found for taxon 'Quercus b'!
#>
#> Enter rownumber of taxon (other inputs will return 'NA'):
#>
#> 1:
```
However, you still get a prompt as there is more than one result.
Thus, for full programmatic usage, you can specify a single row, if you happen
to know which one you want:
```{r}
get_tsn('Quercus b', rows = 3)
```
In reality it is unlikely you'll know which row you want, unless perhaps you
just want one result from each query, regardless of what it is.
### underscore methods
A better fit for programmatic use are underscore methods. Each `get_*()` function
has a sister method with and trailing underscore, e.g., `get_tsn()` and `get_tsn_()`.
```{r}
get_tsn_("Quercus b")
```
The result is a single data.frame for each taxon queried, which can be
processed downstream with whatever logic is required in your workflow.
You can also combine `rows` parameter with underscore functions, as a single
number of a range of numbers:
```{r}
get_tsn_("Quercus b", rows = 1)
```
```{r}
get_tsn_("Quercus b", rows = 1:2)
```
## as.* methods
All `get_*()` functions have associated `as.*()` functions (e.g., `get_tsn()` and `as.tsn()`).
Many `taxize` functions use taxonomic identifier classes (S3 objects) that are the output
of `get_*()` functions. `as.*()` methods make it easy to make the required S3 taxonomic
identifier classes if you already know the identifier. For example:
Already a tsn, returns the same
```{r}
as.tsn(get_tsn("Quercus douglasii"))
```
numeric
```{r}
as.tsn(c(19322, 129313, 506198))
```
And you can do the same for character, or list inputs - depending on the data source.
The above `as.tsn()` examples have the parameter `check = TRUE`, meaning we ping the
data source web service to make sure the identifier exists. You can skip that check
if you like by setting `check = FALSE`, and the result is returned much faster:
```{r}
as.tsn(c("19322","129313","506198"), check = FALSE)
```
With the output of `as.*()` methods, you can then proceed with other `taxize` functions.
## gnr_resolve
Some functions in `taxize` are meant specifically for name cleaning. One of those
is `gnr_resolve()`.
`gnr_resolve()` doesn't provide prompts as do `get_*()` functions, but instead
return data.frame's. So we don't face the same problem, and can use `gnr_resolve()`
in a programmatic workflow straight away.
```{r}
spp <- names_list(rank = "species", size = 10)
gnr_resolve(spp, preferred_data_sources = 11)
```
## Other functions
Some other functions in `taxize` use `get_*()` functions internally (e.g., `classification()`),
but you can can generally pass on parameters to the `get_*()` functions internally.
## Feedback?
Let us know if you have ideas for better ways to do programmatic name cleaning at
https://github.com/ropensci/taxize/issues or https://discuss.ropensci.org/ !