diff --git a/README.md b/README.md index b82a8c9..1fe2f27 100644 --- a/README.md +++ b/README.md @@ -97,10 +97,25 @@ A curated list of awesome resources dedicated to Relation Extraction, inspired b * Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learning [[paper]](https://arxiv.org/abs/1808.06738) * Tianyi Liu, Xinsong Zhang, Wanhao Zhou, Weijia Jia * EMNLP 2018 + #### GNN-based Models +* Matching the Blanks: Distributional Similarity for Relation Learning [[paper]](https://arxiv.org/abs/1906.03158) + * Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, Tom Kwiatkowski + * ACL 2019 * Relation of the Relations: A New Paradigm of the Relation Extraction Problem [[paper]](https://arxiv.org/abs/2006.03719) * Zhijing Jin, Yongyi Yang, Xipeng Qiu, Zheng Zhang * EMNLP 2020 +* GDPNet: Refining Latent Multi-View Graph for Relation Extraction + [[paper]](https://arxiv.org/abs/2012.06780.pdf) + [[code]](https://github.com/XueFuzhao/GDPNet) + * Fuzhao Xue, Aixin Sun, Hao Zhang, Eng Siong Chng + * AAAI 21 +* RECON: Relation Extraction using Knowledge Graph Context in a Graph Neural Network + [[parer]](https://arxiv.org/abs/2009.08694.pdf) + [[code]](https://github.com/ansonb/RECON) + * Anson Bastos, Abhishek Nadgeri, Kuldeep Singh, Isaiah Onando Mulang', Saeedeh Shekarpour, Johannes Hoffart, Manohar Kaul + * WWW'21 + ### Distant Supervision Approaches * Distant supervision for relation extraction without labeled data [[paper]](https://web.stanford.edu/~jurafsky/mintz.pdf) [[review]](https://github.com/roomylee/paper-review/blob/master/relation_extraction/Distant_supervision_for_relation_extraction_without_labeled_data/review.md) * Mike Mintz, Steven Bills, Rion Snow and Dan Jurafsky @@ -134,10 +149,10 @@ A curated list of awesome resources dedicated to Relation Extraction, inspired b * EMNLP 2018 ### Language Models -* Enriching Pre-trained Language Model with Entity Information for Relation Classification [[paper]](https://arxiv.org/pdf/1905.08284.pdf) +* Enriching Pre-trained Language Model with Entity Information for Relation Classification [[paper]](https://arxiv.org/abs/1905.08284.pdf) * Shanchan Wu, Yifan He * arXiv 2019 -* SpanBERT: Improving pre-training by representing and predicting spans [[paper]](https://arxiv.org/pdf/1907.10529.pdf) [[code]](https://github.com/facebookresearch/SpanBERT) +* SpanBERT: Improving pre-training by representing and predicting spans [[paper]](https://arxiv.org/abs/1907.10529.pdf) [[code]](https://github.com/facebookresearch/SpanBERT) * Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer and Omer Levy * Transactions of the Association for Computational Linguistics 2020