forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
191 lines (148 loc) · 7.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Most of the tensorflow code is adapted from Tensorflow's tutorial on using
# CNNs to train MNIST
# https://www.tensorflow.org/get_started/mnist/pros#build-a-multilayer-convolutional-network. # noqa: E501
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import ray
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
def download_mnist_retry(seed=0, max_num_retries=20):
for _ in range(max_num_retries):
try:
return input_data.read_data_sets("MNIST_data", one_hot=True,
seed=seed)
except tf.errors.AlreadyExistsError:
time.sleep(1)
raise Exception("Failed to download MNIST.")
class SimpleCNN(object):
def __init__(self, learning_rate=1e-4):
with tf.Graph().as_default():
# Create the model
self.x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
self.y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
self.y_conv, self.keep_prob = deepnn(self.x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
labels=self.y_, logits=self.y_conv)
self.cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('adam_optimizer'):
self.optimizer = tf.train.AdamOptimizer(learning_rate)
self.train_step = self.optimizer.minimize(
self.cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(self.y_conv, 1),
tf.argmax(self.y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
self.accuracy = tf.reduce_mean(correct_prediction)
self.sess = tf.Session(config=tf.ConfigProto(
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1))
self.sess.run(tf.global_variables_initializer())
# Helper values.
self.variables = ray.experimental.TensorFlowVariables(
self.cross_entropy, self.sess)
self.grads = self.optimizer.compute_gradients(
self.cross_entropy)
self.grads_placeholder = [
(tf.placeholder("float", shape=grad[1].get_shape()), grad[1])
for grad in self.grads]
self.apply_grads_placeholder = self.optimizer.apply_gradients(
self.grads_placeholder)
def compute_update(self, x, y):
# TODO(rkn): Computing the weights before and after the training step
# and taking the diff is awful.
weights = self.get_weights()[1]
self.sess.run(self.train_step, feed_dict={self.x: x,
self.y_: y,
self.keep_prob: 0.5})
new_weights = self.get_weights()[1]
return [x - y for x, y in zip(new_weights, weights)]
def compute_gradients(self, x, y):
return self.sess.run([grad[0] for grad in self.grads],
feed_dict={self.x: x,
self.y_: y,
self.keep_prob: 0.5})
def apply_gradients(self, gradients):
feed_dict = {}
for i in range(len(self.grads_placeholder)):
feed_dict[self.grads_placeholder[i][0]] = gradients[i]
self.sess.run(self.apply_grads_placeholder, feed_dict=feed_dict)
def compute_accuracy(self, x, y):
return self.sess.run(self.accuracy,
feed_dict={self.x: x,
self.y_: y,
self.keep_prob: 1.0})
def set_weights(self, variable_names, weights):
self.variables.set_weights(dict(zip(variable_names, weights)))
def get_weights(self):
weights = self.variables.get_weights()
return list(weights.keys()), list(weights.values())
def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
Args:
x: an input tensor with the dimensions (N_examples, 784), where 784 is
the number of pixels in a standard MNIST image.
Returns:
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with
values equal to the logits of classifying the digit into one of 10
classes (the digits 0-9). keep_prob is a scalar placeholder for the
probability of dropout.
"""
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images
# are grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('fc2'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
def conv2d(x, W):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
"""max_pool_2x2 downsamples a feature map by 2X."""
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)