-
Notifications
You must be signed in to change notification settings - Fork 1
/
02_dplyr.Rmd
382 lines (297 loc) · 7.33 KB
/
02_dplyr.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
---
title: "Touring tidyverse"
subtitle: "dplyr"
output:
xaringan::moon_reader:
lib_dir: libs
nature:
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
---
```{r setup, include=FALSE}
options(htmltools.dir.version = FALSE)
```
background-image: url(https://www.rstudio.com/wp-content/uploads/2015/01/dplyr-hexbin-logo.png)
background-size: 100px
background-position: 90% 8%
# dplyr
has three main goals:
1. Identify the most important data manipulation verbs and make them easy to use from R.
2. Provide blazing fast performance for in-memory data by writing key pieces in C++ (using Rcpp).
3. Use the same interface to work with data no matter where it's stored, whether in a data frame, a data table or database.
---
# Initial commit of dplyr
The year was 2012... (`2012-10-28 19:37` to be precise)
```
Package: plyr2
Type: Package
Title: Tools for splitting, applying and combining data
Version: 0.01
Author: Hadley Wickham <h.wickham@gmail.com>
Maintainer: Hadley Wickham <h.wickham@gmail.com>
Description: ddply on crack
Depends:
R (>= 2.15.1)
License: MIT
```
---
# 23 minutes later
```
Package: dplyr
Type: Package
Title: dplyr: a grammar of data manipulation
Version: 0.01
Author: Hadley Wickham <h.wickham@gmail.com>
Maintainer: Hadley Wickham <h.wickham@gmail.com>
Description: A fast, consistent tools for working with data frame like objects,
both in memory and out of memory.
Imports:
stringr
Depends:
R (>= 2.15.1)
License: MIT
```
---
# Current state
1. `dplyr` replaced `plyr` to specialize on data frames.
2. Current version - `r packageVersion("dplyr")`.
3. https://github.com/tidyverse/dplyr
4. Developed by __Hadley Wickham__, Romain François, Lionel Henry, Kirill Müller.
5. 6000+ commits by 176 contributors.
---
background-image: url(https://www.rstudio.com/wp-content/uploads/2015/01/dplyr-hexbin-logo.png)
background-size: 100px
background-position: 90% 8%
# dplyr
5 verbs:
* `mutate()` adds new variables that are functions of existing variables
* `select()` picks variables based on their names.
* `filter()` picks cases based on their values.
* `summarise()` reduces multiple values down to a single summary.
* `arrange()` changes the ordering of the rows.
---
# Overview of the API
.pull-left[
1. Single-table verbs.
2. Single-table helpers.
3. Two-table verbs.
4. Remote tables.
5. Vector functions.
```{r dplyr_api, echo = FALSE}
funs <- getNamespaceExports("dplyr")
length(funs[!grepl(x = funs, pattern = "_$")])
```
]
--
.pull-right[
1. Selecting columns.
2. Transforming columns.
3. Filtering rows.
4. Summarizing and slicing.
5. `dbplyr`.
Based on https://github.com/suzanbaert/RTutorials
]
---
# Covering today
1. Breaking changes vs changing behaviour.
1. Working with names in `tidyverse`.
---
# Breaking changes
[Breaking changes](https://dbplyr.tidyverse.org/news/index.html#breaking-changes) in packages (`$`, `[[`, `[`).
```{r, message = FALSE, error = TRUE}
library("tidyverse", warn.conflicts = FALSE)
iris_db <- dbplyr::tbl_memdb(iris)
species <- list()
species$species <- c("setosa")
iris_db %>%
dplyr::filter(Species %in% species$species)
```
---
# Breaking changes
These will work:
```{r, eval = FALSE}
iris_db %>%
dplyr::filter(Species %in% !!species$species)
just_vector <- species$species
iris_db %>%
dplyr::filter(Species %in% just_vector)
iris_db %>%
filter(Species %in% local(species$species))
```
---
# Changing behaviour
```{r}
funx <- function(x) {
print(substitute(x))
mean(x)
}
mtcars %>%
select(1:2) %>%
summarise_all(list(~funx(.)))
```
---
# Changing behaviour
```{r}
# works
mtcars %>% select(1:2) %>% summarise_all(list(funx))
mtcars %>% select(1:2) %>% summarise_all(funx)
```
```{r, eval = FALSE}
# doesn't
mtcars %>% select(1:2) %>% summarise_all(~funx(.))
mtcars %>% select(1:2) %>% summarise_all(list(~funx(.)))
```
---
# Working with names in `tidyverse`<sup>1</sup>
One thing is not like the other:
```{r, eval = FALSE}
starwars %>% mutate(birth_year - 100)
starwars %>% group_by(birth_year)
starwars %>% select(birth_year)
starwars %>% filter(birth_year < 50)
```
.footnote[
[1] Full version - https://resources.rstudio.com/rstudio-conf-2019/working-with-names-and-expressions-in-your-tidy-eval-code
]
---
Selection is special since it understands `c`, `-`, and `:` ...
```{r, eval = FALSE}
starwars %>% select(c(1, height))
```
--
and helpers know about variables:
```{r, eval = FALSE}
starwars %>% select(ends_with("color"))
```
---
However, consider following:
.pull-left[
```{r}
starwars %>% select(height)
```
]
.pull-right[
```{r}
starwars %>% transmute(height)
```
]
---
.pull-left[
```{r}
starwars %>% select(1)
```
]
.pull-right[
```{r}
starwars %>% transmute(1)
```
]
---
# Passing selections
```{r}
starwars %>%
group_by_at(vars(ends_with("color")))
```
---
# Writing functions with selections
```{r}
custom_summarize <- function(.data, ...){
.data %>%
summarize_at(vars(...), ~ mean(., na.rm = TRUE))
}
custom_summarize(starwars, height, mass)
custom_summarize(starwars, starts_with("height"))
```
---
# Works with groups
```{r}
starwars %>%
group_by(hair_color) %>%
custom_summarize(mass)
```
---
# What if we want to pass actions instead?
```{r}
summary_functions <- list(
~ mean(., na.rm = TRUE),
~ sd(., na.rm = TRUE)
)
summarize_acts <- function(.data, ...){
.data %>%
transmute(...) %>%
summarize_all(summary_functions)
}
summarize_acts(starwars, heightm = height / 100, bmi = mass / heightm ^ 2)
```
---
# Works with groups as well
```{r}
starwars %>%
group_by(gender) %>%
summarize_acts(heightm = height / 100, bmi = mass / heightm ^ 2)
```
---
# Adding `tidyr`
```{r}
gather_summarize_acts <- function(.data, ...){
.data %>%
transmute(...) %>%
gather("Variable", "Value", everything()) %>%
group_by(Variable) %>%
summarize_at(vars("Value"), summary_functions)
}
starwars %>%
gather_summarize_acts(
heightm = height / 100, bmi = mass / heightm ^ 2
)
```
---
# Groups don't work
```{r}
starwars %>%
group_by(gender) %>%
gather_summarize_acts(
heightm = height / 100,
bmi = mass / heightm ^ 2
)
```
---
# Use selectors
Lionel's version
```{r, eval = FALSE}
gather_summarize_acts <- function(.data, ...){
.data %>%
transmute(...) %>%
gather("Variable", "Value", -one_of(group_vars(.))) %>%
group_by(Variable) %>%
summarize_at(vars("Value"), summary_functions)
}
```
---
# Correct version
```{r}
gather_summarize_acts <- function(.data, ...){
transmute(.data, ...) %>%
gather("Variable", "Value", -one_of(group_vars(.))) %>%
group_by_at(vars(c(group_vars(.), Variable))) %>%
summarize_at(vars("Value"), summary_functions)
}
starwars %>% group_by(gender) %>%
gather_summarize_acts( heightm = height / 100, bmi = mass / heightm ^ 2)
```
---
```{r, echo = FALSE}
countdown::countdown_fullscreen(minutes = 4, update_every = 30,
padding = "20%", margin = "5%",
font_size = "8em", line_height = "1.25")
````
---
# Resources
1. https://dplyr.tidyverse.org/index.html
2. http://r4ds.had.co.nz/transform.html
3. https://suzan.rbind.io/2018/01/dplyr-tutorial-1/
4. https://dplyr.tidyverse.org/reference/index.html
5. https://github.com/rstudio/cheatsheets/blob/master/data-transformation.pdf
6. https://www.nielsenmark.us/2018/07/07/connecting-r-to-postgresql-on-linux/
7. http://db.rstudio.com/