-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes-lenet.py
143 lines (119 loc) · 4.28 KB
/
bayes-lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from numpy.random import seed
from tensorflow import set_random_seed
from math import sqrt
import numpy as np
import pandas as pd
import seaborn as sns
from numpy import array
from keras import Input, Model
from keras.models import InputLayer
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.convolutional import AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras import regularizers
from keras import optimizers
from sklearn.metrics import mean_absolute_error
from sklearn import preprocessing
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--observations', default=None)
parser.add_argument("--true_values", default=None)
parser.add_argument("--forecasts", default=None)
args = parser.parse_args()
seed(42)
set_random_seed(42)
def smape(a, b):
"""
Calculates sMAPE
:param a: actual values
:param b: predicted values
:return: sMAPE
"""
a = np.reshape(a, (-1,))
b = np.reshape(b, (-1,))
return np.mean(2.0 * np.abs(a - b) / (np.abs(a) + np.abs(b))).item()
# Observations
df_series = pd.read_csv(args.observations)
df_series = df_series.drop(['V1'],axis=1)
# True forecasts
df_obs = pd.read_csv(args.true_values)
df_obs = df_obs.drop(['V1'],axis=1)
# Forecats given by comb monitored model
df_preds = pd.read_csv(args.forecasts)
df_preds = df_preds.drop(['Unnamed: 0'],axis=1).T
df_preds.index = df_obs.index
series_matr = df_series.values
obs_matr = df_obs.values
preds = df_preds.values
# Evaluate sMAPE between true values and forecasts
smape_arr = np.zeros(obs_matr.shape[0])
for i in range(len(obs_matr)):
smape_arr[i] = smape(obs_matr[i],preds[i])
df_all = pd.concat([df_series,df_preds],axis=1,join='inner')
max_l = df_all.shape[1]
data_all = df_all.values
# Padding time-series
for i in range(len(data_all)):
if i % 1000 == 0:
print("Padding row {}".format(i))
ts = data_all[i,:]
ts = ts[~np.isnan(ts)]
if len(ts)<max_l:
diff = max_l - len(ts)
padd = np.zeros((1,diff)).flatten()
ts = np.hstack((ts,padd))
if i == 0:
X_mat = ts
else:
X_mat = np.vstack((X_mat,ts))
min_max_scaler = preprocessing.MinMaxScaler()
X_mat = min_max_scaler.fit_transform(X_mat)
smape_arr = np.log(smape_arr)
test_percentage = 0.25
total = X_mat.shape[0]
train_samples = int(np.ceil(total) * (1-test_percentage))
test_samples = total - train_samples
train_X = X_mat[:train_samples]
train_y = smape_arr[:train_samples]
test_X = X_mat[train_samples:]
test_y = smape_arr[train_samples:]
# Run Bayes-LeNet monitoring model
mc_samples = 100
train_Xr = train_X.reshape(train_X.shape[0], 1, train_X.shape[1], 1)
input_shape = (1,train_X.shape[1],1)
inp = Input(shape=input_shape)
x = Conv2D(6, (1,5), activation='relu', input_shape=input_shape, padding='same',kernel_regularizer=regularizers.l2(1.e-4))(inp)
x = BatchNormalization()(x)
x = AveragePooling2D(pool_size=(1,2))(x)
x = Dropout(0.5)(x, training=True)
x = Conv2D(16, (1,5), activation='relu', input_shape=input_shape, padding='same',kernel_regularizer=regularizers.l2(1.e-4))(x)
x = BatchNormalization()(x)
x = AveragePooling2D(pool_size=(1,2))(x)
x = Dropout(0.5)(x, training=True)
x = AveragePooling2D(pool_size=(1,2))(x)
x = Flatten()(x)
x = Dense(120, activation='relu')(x)
x = Dropout(0.5)(x, training=True)
x = Dense(84, activation='relu')(x)
#x = Dropout(0.6)(x, training=True)
x = Dense(1)(x)
model = Model(inp, x, name='lenet-all')
adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(optimizer=adam, loss='mse')
# fit model
model.fit(train_Xr, train_y, epochs=1000, verbose=2, batch_size=128)
test_Xr = test_X.reshape(test_X.shape[0], 1, test_X.shape[1], 1)
for i in range(mc_samples):
yhat_s = model.predict(test_Xr, verbose=0)
yhat_s = np.exp(yhat_s)
row_yhat = pd.DataFrame(yhat_s)
if i == 0:
df_yhat = row_yhat
print(df_yhat.shape)
else:
df_yhat = pd.concat([df_yhat,row_yhat],axis=1)