|
59 | 59 | import org.tensorflow.op.core.BarrierTakeMany;
|
60 | 60 | import org.tensorflow.op.core.Batch;
|
61 | 61 | import org.tensorflow.op.core.BatchFunction;
|
62 |
| -import org.tensorflow.op.core.BatchMatMulV3; |
63 | 62 | import org.tensorflow.op.core.BatchToSpace;
|
64 | 63 | import org.tensorflow.op.core.BatchToSpaceNd;
|
65 | 64 | import org.tensorflow.op.core.Bitcast;
|
|
213 | 212 | import org.tensorflow.op.core.Slice;
|
214 | 213 | import org.tensorflow.op.core.Snapshot;
|
215 | 214 | import org.tensorflow.op.core.SpaceToBatchNd;
|
216 |
| -import org.tensorflow.op.core.SparseSegmentSumGrad; |
217 | 215 | import org.tensorflow.op.core.Split;
|
218 | 216 | import org.tensorflow.op.core.SplitV;
|
219 | 217 | import org.tensorflow.op.core.Squeeze;
|
|
296 | 294 | import org.tensorflow.op.core.VariableShape;
|
297 | 295 | import org.tensorflow.op.core.Where;
|
298 | 296 | import org.tensorflow.op.core.While;
|
299 |
| -import org.tensorflow.op.core.XlaRemoveDynamicDimensionSize; |
300 | 297 | import org.tensorflow.op.core.Zeros;
|
301 | 298 | import org.tensorflow.op.core.ZerosLike;
|
302 | 299 | import org.tensorflow.types.TBool;
|
@@ -842,42 +839,6 @@ public BatchFunction batchFunction(Iterable<Operand<?>> inTensors,
|
842 | 839 | return BatchFunction.create(scope, inTensors, capturedTensors, f, numBatchThreads, maxBatchSize, batchTimeoutMicros, Tout, options);
|
843 | 840 | }
|
844 | 841 |
|
845 |
| - /** |
846 |
| - * Multiplies slices of two tensors in batches. |
847 |
| - * Multiplies all slices of {@code Tensor} {@code x} and {@code y} (each slice can be |
848 |
| - * viewed as an element of a batch), and arranges the individual results |
849 |
| - * in a single output tensor of the same batch size. Each of the |
850 |
| - * individual slices can optionally be adjointed (to adjoint a matrix |
851 |
| - * means to transpose and conjugate it) before multiplication by setting |
852 |
| - * the {@code adj_x} or {@code adj_y} flag to {@code True}, which are by default {@code False}. |
853 |
| - * <p>The input tensors {@code x} and {@code y} are 2-D or higher with shape {@code [..., r_x, c_x]} |
854 |
| - * and {@code [..., r_y, c_y]}. |
855 |
| - * <p>The output tensor is 2-D or higher with shape {@code [..., r_o, c_o]}, where: |
856 |
| - * <pre> |
857 |
| - * r_o = c_x if adj_x else r_x |
858 |
| - * c_o = r_y if adj_y else c_y |
859 |
| - * </pre> |
860 |
| - * <p>It is computed as: |
861 |
| - * <pre> |
862 |
| - * output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) |
863 |
| - * </pre> |
864 |
| - * <p><em>NOTE</em>: {@code BatchMatMulV3} supports broadcasting in the batch dimensions. More |
865 |
| - * about broadcasting |
866 |
| - * <a href="http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html">here</a> . |
867 |
| - * |
868 |
| - * @param <V> data type for {@code output} output |
869 |
| - * @param x 2-D or higher with shape {@code [..., r_x, c_x]}. |
870 |
| - * @param y 2-D or higher with shape {@code [..., r_y, c_y]}. |
871 |
| - * @param Tout If not spcified, Tout is the same type to input type. |
872 |
| - * @param options carries optional attribute values |
873 |
| - * @param <V> data type for {@code BatchMatMulV3} output and operands |
874 |
| - * @return a new instance of BatchMatMulV3 |
875 |
| - */ |
876 |
| - public <V extends TType> BatchMatMulV3<V> batchMatMulV3(Operand<? extends TType> x, |
877 |
| - Operand<? extends TType> y, Class<V> Tout, BatchMatMulV3.Options... options) { |
878 |
| - return BatchMatMulV3.create(scope, x, y, Tout, options); |
879 |
| - } |
880 |
| - |
881 | 842 | /**
|
882 | 843 | * BatchToSpace for 4-D tensors of type T.
|
883 | 844 | * This is a legacy version of the more general BatchToSpaceND.
|
@@ -5856,25 +5817,6 @@ public <T extends TType> SpaceToBatchNd<T> spaceToBatchNd(Operand<T> input,
|
5856 | 5817 | return SpaceToBatchNd.create(scope, input, blockShape, paddings);
|
5857 | 5818 | }
|
5858 | 5819 |
|
5859 |
| - /** |
5860 |
| - * Computes gradients for SparseSegmentSum. |
5861 |
| - * Returns tensor "output" with same shape as grad, except for dimension 0 whose |
5862 |
| - * value is output_dim0. |
5863 |
| - * |
5864 |
| - * @param <T> data type for {@code output} output |
5865 |
| - * @param grad gradient propagated to the SparseSegmentSum op. |
5866 |
| - * @param indices indices passed to the corresponding SparseSegmentSum op. |
5867 |
| - * @param segmentIds segment_ids passed to the corresponding SparseSegmentSum op. |
5868 |
| - * @param outputDim0 dimension 0 of "data" passed to SparseSegmentSum op. |
5869 |
| - * @param <T> data type for {@code SparseSegmentSumGrad} output and operands |
5870 |
| - * @return a new instance of SparseSegmentSumGrad |
5871 |
| - */ |
5872 |
| - public <T extends TNumber> SparseSegmentSumGrad<T> sparseSegmentSumGrad(Operand<T> grad, |
5873 |
| - Operand<? extends TNumber> indices, Operand<? extends TNumber> segmentIds, |
5874 |
| - Operand<TInt32> outputDim0) { |
5875 |
| - return SparseSegmentSumGrad.create(scope, grad, indices, segmentIds, outputDim0); |
5876 |
| - } |
5877 |
| - |
5878 | 5820 | /**
|
5879 | 5821 | * Splits a tensor into {@code num_split} tensors along one dimension.
|
5880 | 5822 | *
|
@@ -8099,24 +8041,6 @@ public While whileOp(Iterable<Operand<?>> input, ConcreteFunction cond, Concrete
|
8099 | 8041 | return While.create(scope, input, cond, body, options);
|
8100 | 8042 | }
|
8101 | 8043 |
|
8102 |
| - /** |
8103 |
| - * Inverse of XlaSetDynamicDimensionSize. Make an xla bounded |
8104 |
| - * <pre> |
8105 |
| - * dynamic dimension into a static dimension. The bound of the size of |
8106 |
| - * dimension `dim_index` becomes the static dimension size. |
8107 |
| - * </pre> |
8108 |
| - * |
8109 |
| - * @param <T> data type for {@code output} output |
8110 |
| - * @param input the input value |
8111 |
| - * @param dimIndex the dimIndex value |
8112 |
| - * @param <T> data type for {@code XlaRemoveDynamicDimensionSize} output and operands |
8113 |
| - * @return a new instance of XlaRemoveDynamicDimensionSize |
8114 |
| - */ |
8115 |
| - public <T extends TType> XlaRemoveDynamicDimensionSize<T> xlaRemoveDynamicDimensionSize( |
8116 |
| - Operand<T> input, Operand<TInt32> dimIndex) { |
8117 |
| - return XlaRemoveDynamicDimensionSize.create(scope, input, dimIndex); |
8118 |
| - } |
8119 |
| - |
8120 | 8044 | /**
|
8121 | 8045 | * Creates a zeroed tensor given its type and shape.
|
8122 | 8046 | *
|
|
0 commit comments