@@ -155,8 +155,8 @@ public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits) {
155155 * @param tf the TensorFlow Ops
156156 * @param fromLogits Whether to interpret predictions as a tensor of logit values
157157 * @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
158- * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
159- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
158+ * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</ code> means that we will use a
159+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
160160 */
161161 public CategoricalCrossentropy (Ops tf , boolean fromLogits , float labelSmoothing ) {
162162 this (tf , null , fromLogits , labelSmoothing , REDUCTION_DEFAULT , DEFAULT_AXIS );
@@ -170,8 +170,8 @@ public CategoricalCrossentropy(Ops tf, boolean fromLogits, float labelSmoothing)
170170 * @param name the name of this loss
171171 * @param fromLogits Whether to interpret predictions as a tensor of logit values
172172 * @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
173- * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
174- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
173+ * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</ code> means that we will use a
174+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
175175 */
176176 public CategoricalCrossentropy (Ops tf , String name , boolean fromLogits , float labelSmoothing ) {
177177 this (tf , name , fromLogits , labelSmoothing , REDUCTION_DEFAULT , DEFAULT_AXIS );
@@ -184,8 +184,8 @@ public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits, float la
184184 * @param tf the TensorFlow Ops
185185 * @param fromLogits Whether to interpret predictions as a tensor of logit values
186186 * @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
187- * confidence on label values are relaxed. e.g. <code>x=0.2<code> means that we will use a
188- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
187+ * confidence on label values are relaxed. e.g. <code>x=0.2</ code> means that we will use a
188+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
189189 * @param reduction Type of Reduction to apply to loss.
190190 */
191191 public CategoricalCrossentropy (
@@ -200,8 +200,8 @@ public CategoricalCrossentropy(
200200 * @param name the name of this loss
201201 * @param fromLogits Whether to interpret predictions as a tensor of logit values
202202 * @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
203- * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
204- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
203+ * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</ code> means that we will use a
204+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
205205 * @param reduction Type of Reduction to apply to loss.
206206 * @param axis The channels axis. <code>axis=-1</code> corresponds to data format `Channels Last'
207207 * and <code>axis=1</code> corresponds to data format 'Channels First'.
0 commit comments