forked from nwojke/deep_sort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_viewer.py
345 lines (289 loc) · 11.2 KB
/
image_viewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# vim: expandtab:ts=4:sw=4
"""
This module contains an image viewer and drawing routines based on OpenCV.
"""
import numpy as np
import cv2
import time
def is_in_bounds(mat, roi):
"""Check if ROI is fully contained in the image.
Parameters
----------
mat : ndarray
An ndarray of ndim>=2.
roi : (int, int, int, int)
Region of interest (x, y, width, height) where (x, y) is the top-left
corner.
Returns
-------
bool
Returns true if the ROI is contain in mat.
"""
if roi[0] < 0 or roi[0] + roi[2] >= mat.shape[1]:
return False
if roi[1] < 0 or roi[1] + roi[3] >= mat.shape[0]:
return False
return True
def view_roi(mat, roi):
"""Get sub-array.
The ROI must be valid, i.e., fully contained in the image.
Parameters
----------
mat : ndarray
An ndarray of ndim=2 or ndim=3.
roi : (int, int, int, int)
Region of interest (x, y, width, height) where (x, y) is the top-left
corner.
Returns
-------
ndarray
A view of the roi.
"""
sx, ex = roi[0], roi[0] + roi[2]
sy, ey = roi[1], roi[1] + roi[3]
if mat.ndim == 2:
return mat[sy:ey, sx:ex]
else:
return mat[sy:ey, sx:ex, :]
class ImageViewer(object):
"""An image viewer with drawing routines and video capture capabilities.
Key Bindings:
* 'SPACE' : pause
* 'ESC' : quit
Parameters
----------
update_ms : int
Number of milliseconds between frames (1000 / frames per second).
window_shape : (int, int)
Shape of the window (width, height).
caption : Optional[str]
Title of the window.
Attributes
----------
image : ndarray
Color image of shape (height, width, 3). You may directly manipulate
this image to change the view. Otherwise, you may call any of the
drawing routines of this class. Internally, the image is treated as
beeing in BGR color space.
Note that the image is resized to the the image viewers window_shape
just prior to visualization. Therefore, you may pass differently sized
images and call drawing routines with the appropriate, original point
coordinates.
color : (int, int, int)
Current BGR color code that applies to all drawing routines.
Values are in range [0-255].
text_color : (int, int, int)
Current BGR text color code that applies to all text rendering
routines. Values are in range [0-255].
thickness : int
Stroke width in pixels that applies to all drawing routines.
"""
def __init__(self, update_ms, window_shape=(640, 480), caption="Figure 1"):
self._window_shape = window_shape
self._caption = caption
self._update_ms = update_ms
self._video_writer = None
self._user_fun = lambda: None
self._terminate = False
self.image = np.zeros(self._window_shape + (3, ), dtype=np.uint8)
self._color = (0, 0, 0)
self.text_color = (255, 255, 255)
self.thickness = 1
@property
def color(self):
return self._color
@color.setter
def color(self, value):
if len(value) != 3:
raise ValueError("color must be tuple of 3")
self._color = tuple(int(c) for c in value)
def rectangle(self, x, y, w, h, label=None):
"""Draw a rectangle.
Parameters
----------
x : float | int
Top left corner of the rectangle (x-axis).
y : float | int
Top let corner of the rectangle (y-axis).
w : float | int
Width of the rectangle.
h : float | int
Height of the rectangle.
label : Optional[str]
A text label that is placed at the top left corner of the
rectangle.
"""
pt1 = int(x), int(y)
pt2 = int(x + w), int(y + h)
cv2.rectangle(self.image, pt1, pt2, self._color, self.thickness)
if label is not None:
text_size = cv2.getTextSize(
label, cv2.FONT_HERSHEY_PLAIN, 1, self.thickness)
center = pt1[0] + 5, pt1[1] + 5 + text_size[0][1]
pt2 = pt1[0] + 10 + text_size[0][0], pt1[1] + 10 + \
text_size[0][1]
cv2.rectangle(self.image, pt1, pt2, self._color, -1)
cv2.putText(self.image, label, center, cv2.FONT_HERSHEY_PLAIN,
1, (255, 255, 255), self.thickness)
def circle(self, x, y, radius, label=None):
"""Draw a circle.
Parameters
----------
x : float | int
Center of the circle (x-axis).
y : float | int
Center of the circle (y-axis).
radius : float | int
Radius of the circle in pixels.
label : Optional[str]
A text label that is placed at the center of the circle.
"""
image_size = int(radius + self.thickness + 1.5) # actually half size
roi = int(x - image_size), int(y - image_size), \
int(2 * image_size), int(2 * image_size)
if not is_in_bounds(self.image, roi):
return
image = view_roi(self.image, roi)
center = image.shape[1] // 2, image.shape[0] // 2
cv2.circle(
image, center, int(radius + .5), self._color, self.thickness)
if label is not None:
cv2.putText(
self.image, label, center, cv2.FONT_HERSHEY_PLAIN,
2, self.text_color, 2)
def gaussian(self, mean, covariance, label=None):
"""Draw 95% confidence ellipse of a 2-D Gaussian distribution.
Parameters
----------
mean : array_like
The mean vector of the Gaussian distribution (ndim=1).
covariance : array_like
The 2x2 covariance matrix of the Gaussian distribution.
label : Optional[str]
A text label that is placed at the center of the ellipse.
"""
# chi2inv(0.95, 2) = 5.9915
vals, vecs = np.linalg.eigh(5.9915 * covariance)
indices = vals.argsort()[::-1]
vals, vecs = np.sqrt(vals[indices]), vecs[:, indices]
center = int(mean[0] + .5), int(mean[1] + .5)
axes = int(vals[0] + .5), int(vals[1] + .5)
angle = int(180. * np.arctan2(vecs[1, 0], vecs[0, 0]) / np.pi)
cv2.ellipse(
self.image, center, axes, angle, 0, 360, self._color, 2)
if label is not None:
cv2.putText(self.image, label, center, cv2.FONT_HERSHEY_PLAIN,
2, self.text_color, 2)
def annotate(self, x, y, text):
"""Draws a text string at a given location.
Parameters
----------
x : int | float
Bottom-left corner of the text in the image (x-axis).
y : int | float
Bottom-left corner of the text in the image (y-axis).
text : str
The text to be drawn.
"""
cv2.putText(self.image, text, (int(x), int(y)), cv2.FONT_HERSHEY_PLAIN,
2, self.text_color, 2)
def colored_points(self, points, colors=None, skip_index_check=False):
"""Draw a collection of points.
The point size is fixed to 1.
Parameters
----------
points : ndarray
The Nx2 array of image locations, where the first dimension is
the x-coordinate and the second dimension is the y-coordinate.
colors : Optional[ndarray]
The Nx3 array of colors (dtype=np.uint8). If None, the current
color attribute is used.
skip_index_check : Optional[bool]
If True, index range checks are skipped. This is faster, but
requires all points to lie within the image dimensions.
"""
if not skip_index_check:
cond1, cond2 = points[:, 0] >= 0, points[:, 0] < 480
cond3, cond4 = points[:, 1] >= 0, points[:, 1] < 640
indices = np.logical_and.reduce((cond1, cond2, cond3, cond4))
points = points[indices, :]
if colors is None:
colors = np.repeat(
self._color, len(points)).reshape(3, len(points)).T
indices = (points + .5).astype(np.int)
self.image[indices[:, 1], indices[:, 0], :] = colors
def enable_videowriter(self, output_filename, fourcc_string="MJPG",
fps=None):
""" Write images to video file.
Parameters
----------
output_filename : str
Output filename.
fourcc_string : str
The OpenCV FOURCC code that defines the video codec (check OpenCV
documentation for more information).
fps : Optional[float]
Frames per second. If None, configured according to current
parameters.
"""
fourcc = cv2.VideoWriter_fourcc(*fourcc_string)
if fps is None:
fps = int(1000. / self._update_ms)
self._video_writer = cv2.VideoWriter(
output_filename, fourcc, fps, self._window_shape)
def disable_videowriter(self):
""" Disable writing videos.
"""
self._video_writer = None
def run(self, update_fun=None):
"""Start the image viewer.
This method blocks until the user requests to close the window.
Parameters
----------
update_fun : Optional[Callable[] -> None]
An optional callable that is invoked at each frame. May be used
to play an animation/a video sequence.
"""
if update_fun is not None:
self._user_fun = update_fun
self._terminate, is_paused = False, False
# print("ImageViewer is paused, press space to start.")
while not self._terminate:
t0 = time.time()
if not is_paused:
self._terminate = not self._user_fun()
if self._video_writer is not None:
self._video_writer.write(
cv2.resize(self.image, self._window_shape))
t1 = time.time()
remaining_time = max(1, int(self._update_ms - 1e3*(t1-t0)))
cv2.imshow(
self._caption, cv2.resize(self.image, self._window_shape[:2]))
key = cv2.waitKey(remaining_time)
if key & 255 == 27: # ESC
print("terminating")
self._terminate = True
elif key & 255 == 32: # ' '
print("toggeling pause: " + str(not is_paused))
is_paused = not is_paused
elif key & 255 == 115: # 's'
print("stepping")
self._terminate = not self._user_fun()
is_paused = True
# Due to a bug in OpenCV we must call imshow after destroying the
# window. This will make the window appear again as soon as waitKey
# is called.
#
# see https://github.com/Itseez/opencv/issues/4535
self.image[:] = 0
cv2.destroyWindow(self._caption)
cv2.waitKey(1)
cv2.imshow(self._caption, self.image)
def stop(self):
"""Stop the control loop.
After calling this method, the viewer will stop execution before the
next frame and hand over control flow to the user.
Parameters
----------
"""
self._terminate = True