forked from pemistahl/lingua-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.go
184 lines (170 loc) · 5.21 KB
/
model.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
* Copyright © 2021 Peter M. Stahl pemistahl@gmail.com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package lingua
import (
"encoding/json"
"fmt"
"math/big"
"regexp"
"sort"
"strings"
)
type languageModel interface {
getRelativeFrequency(ngram ngram) float64
}
type jsonLanguageModel struct {
Language Language `json:"language"`
Ngrams map[string]string `json:"ngrams"`
}
type trainingDataLanguageModel struct {
language Language
absoluteFrequencies map[ngram]uint32
relativeFrequencies map[ngram]*big.Rat
jsonRelativeFrequencies map[ngram]float64
}
type testDataLanguageModel struct {
ngrams map[ngram]bool
}
func newTrainingDataLanguageModel(
text []string,
language Language,
ngramLength int,
charClass string,
lowerNgramAbsoluteFrequencies map[ngram]uint32,
) trainingDataLanguageModel {
absoluteFrequencies := computeAbsoluteFrequencies(text, ngramLength, charClass)
relativeFrequencies := computeRelativeFrequencies(ngramLength, absoluteFrequencies, lowerNgramAbsoluteFrequencies)
return trainingDataLanguageModel{
language: language,
absoluteFrequencies: absoluteFrequencies,
relativeFrequencies: relativeFrequencies,
jsonRelativeFrequencies: nil,
}
}
func newTrainingDataLanguageModelFromJson(jsonData []byte) trainingDataLanguageModel {
var jsonModel jsonLanguageModel
err := json.Unmarshal(jsonData, &jsonModel)
if err != nil {
panic(err.Error())
}
jsonRelativeFrequencies := make(map[ngram]float64)
for rat, ngrams := range jsonModel.Ngrams {
r := new(big.Rat)
r.SetString(rat)
f, _ := r.Float64()
for _, ngram := range strings.Split(ngrams, " ") {
jsonRelativeFrequencies[newNgram(ngram)] = f
}
}
return trainingDataLanguageModel{
language: jsonModel.Language,
absoluteFrequencies: nil,
relativeFrequencies: nil,
jsonRelativeFrequencies: jsonRelativeFrequencies,
}
}
func (model trainingDataLanguageModel) toJson() []byte {
ratsToNgrams := make(map[string]ngramSlice)
for ngram, rat := range model.relativeFrequencies {
r := rat.String()
ratsToNgrams[r] = append(ratsToNgrams[r], ngram)
}
ratsToJoinedNgrams := make(map[string]string)
for rat, ngrams := range ratsToNgrams {
sort.Sort(ngrams)
var ngramValues []string
for _, ngram := range ngrams {
ngramValues = append(ngramValues, ngram.value)
}
ratsToJoinedNgrams[rat] = strings.Join(ngramValues, " ")
}
jsonModel := jsonLanguageModel{
Language: model.language,
Ngrams: ratsToJoinedNgrams,
}
serializedJsonModel, err := json.Marshal(jsonModel)
if err != nil {
panic(err.Error())
}
return serializedJsonModel
}
func (model trainingDataLanguageModel) getRelativeFrequency(ngram ngram) float64 {
if frequency, exists := model.jsonRelativeFrequencies[ngram]; exists {
return frequency
}
return 0
}
func newTestDataLanguageModel(text string, ngramLength int) testDataLanguageModel {
if ngramLength > maxNgramLength {
panic(fmt.Sprintf("ngram length %v is greater than %v", ngramLength, maxNgramLength))
}
ngrams := make(map[ngram]bool)
chars := []rune(text)
charsCount := len(chars)
if charsCount >= ngramLength {
for i := 0; i <= charsCount-ngramLength; i++ {
slice := string(chars[i : i+ngramLength])
if letter.MatchString(slice) {
ngrams[newNgram(slice)] = true
}
}
}
return testDataLanguageModel{ngrams: ngrams}
}
func computeAbsoluteFrequencies(
text []string,
ngramLength int,
charClass string,
) map[ngram]uint32 {
absoluteFrequencies := make(map[ngram]uint32)
regex, err := regexp.Compile(fmt.Sprintf("^[%v]+$", charClass))
if err != nil {
panic(fmt.Sprintf("The character class '%v' cannot be compiled to a valid regular expression", charClass))
}
for _, line := range text {
chars := []rune(strings.ToLower(line))
for i := 0; i <= len(chars)-ngramLength; i++ {
slice := string(chars[i : i+ngramLength])
if regex.MatchString(slice) {
absoluteFrequencies[newNgram(slice)]++
}
}
}
return absoluteFrequencies
}
func computeRelativeFrequencies(
ngramLength int,
absoluteFrequencies map[ngram]uint32,
lowerNgramAbsoluteFrequencies map[ngram]uint32,
) map[ngram]*big.Rat {
ngramProbabilities := make(map[ngram]*big.Rat)
var totalNgramFrequency uint32
for _, frequency := range absoluteFrequencies {
totalNgramFrequency += frequency
}
for ngram, frequency := range absoluteFrequencies {
var denominator uint32
if ngramLength == 1 || len(lowerNgramAbsoluteFrequencies) == 0 {
denominator = totalNgramFrequency
} else {
chars := []rune(ngram.value)
slice := string(chars[0 : ngramLength-1])
denominator = lowerNgramAbsoluteFrequencies[newNgram(slice)]
}
ngramProbabilities[ngram] = big.NewRat(int64(frequency), int64(denominator))
}
return ngramProbabilities
}