Skip to content

Thanks to digitization, we often have access to large databases, consisting of various fields of information, ranging from numbers to texts and even boolean values. Such databases lend themselves especially well to machine learning, classification and big data analysis tasks. We are able to train classifiers, using already existing data and use …

License

Notifications You must be signed in to change notification settings

ritabratamaiti/Blooddonorprediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Blooddonorprediction

Cite Us! DOI

Abstract

Thanks to digitization, we often have access to large databases, consisting of various fields of information, ranging from numbers to texts and even boolean values. Such databases lend themselves especially well to machine learning, classification and big data analysis tasks. We are able to train classifiers, using already existing data and use them for predicting the values of a certain field, given that we have information regarding the other fields.

Most specifically, in this study, we look at the Electronic Health Records (EHRs) that are compiled by hospitals. These EHRs are convenient means of accessing data of individual patients, but there processing as a whole still remains a task. However, EHRs that are composed of coherent, well-tabulated structures lend themselves quite well to the application to machine language, via the usage of classifiers. In this study, we look at a Blood Transfusion Service Center Data Set (Data taken from the Blood Transfusion Service Center in Hsin-Chu City in Taiwan). We used scikit-learn machine learning in python. From Support Vector Machines(SVM), we use Support Vector Classification(SVC), from the linear model we import Perceptron. We also used the K.neighborsclassifier and the decision tree classifiers. Furthermore, we use the TPOT library to find an optimized pipeline using genetic algorithms. Using the above classifiers, we score each one of them using k fold cross-validation.

How do I run the script?

In order to run the script, you will need Python (Version 3.6), and the Scikit learn, TPOT and Pandas library. One easy way to do this is to get Anaconda for the appropriate Python version, as it comes pre-installed with a number of Python libraries which are typically used in Machine learning, such as Scikit learn and Pandas. However, you still need to install TPOT separately.

Note:

You must run script.py

Installation Links:

  1. Anaconda

  2. TPOT

About

Thanks to digitization, we often have access to large databases, consisting of various fields of information, ranging from numbers to texts and even boolean values. Such databases lend themselves especially well to machine learning, classification and big data analysis tasks. We are able to train classifiers, using already existing data and use …

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages