-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_ssmctb.py
108 lines (81 loc) · 3.75 KB
/
torch_ssmctb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class ChannelWiseTransformerBlock(nn.Module):
def __init__(self, num_patches, patch_dim=1, dim=64, heads=5, dim_head=64, dropout=0.):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(patch_dim)
self.projection = nn.Linear(patch_dim ** 2, dim)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.mha = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
self.sigmoid = nn.Sigmoid()
def forward(self, z):
x = self.avg_pool(z)
x = x.flatten(-2)
x = self.projection(x)
x += self.pos_embedding
x = self.mha(x)
x = x.mean(-1).unsqueeze(-1).unsqueeze(-1)
x = self.sigmoid(x)
return z * x
# SSMCTB implementation
class SSMCTB(nn.Module):
def __init__(self, channels, kernel_dim=1, dilation=1):
'''
channels: The number of filter at the output (usually the same with the number of filter from the input)
kernel_dim: The dimension of the sub-kernels ' k' ' from the paper
dilation: The dilation dimension 'd' from the paper
reduction_ratio: The reduction ratio for the SE block ('r' from the paper)
'''
super(SSMCTB, self).__init__()
self.pad = kernel_dim + dilation
self.border_input = kernel_dim + 2 * dilation + 1
self.relu = nn.ReLU()
self.transformer = ChannelWiseTransformerBlock(num_patches=channels, patch_dim=1)
self.conv1 = nn.Conv2d(in_channels=channels,
out_channels=channels,
kernel_size=kernel_dim)
self.conv2 = nn.Conv2d(in_channels=channels,
out_channels=channels,
kernel_size=kernel_dim)
self.conv3 = nn.Conv2d(in_channels=channels,
out_channels=channels,
kernel_size=kernel_dim)
self.conv4 = nn.Conv2d(in_channels=channels,
out_channels=channels,
kernel_size=kernel_dim)
def forward(self, x_in):
x = F.pad(x_in, (self.pad, self.pad, self.pad, self.pad), "constant", 0)
x1 = self.conv1(x[:, :, :-self.border_input, :-self.border_input])
x2 = self.conv2(x[:, :, self.border_input:, :-self.border_input])
x3 = self.conv3(x[:, :, :-self.border_input, self.border_input:])
x4 = self.conv4(x[:, :, self.border_input:, self.border_input:])
x = self.relu(x1 + x2 + x3 + x4)
x = self.transformer(x)
return x, torch.mean((x - x_in) ** 2) # output, loss
# model = SSMCTB(32)
# model(torch.zeros((3, 32, 64, 64)))