-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdiscriminator.txt
84 lines (84 loc) · 3.36 KB
/
discriminator.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Discriminator :
MultiScaleDiscriminator(
(model): ModuleDict(
(disc_0): Discriminator(
(discriminator): ModuleDict(
(layer_0): Sequential(
(0): ReflectionPad1d((7, 7))
(1): Conv1d(1, 16, kernel_size=(15,), stride=(1,))
(2): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_1): Sequential(
(0): Conv1d(16, 64, kernel_size=(41,), stride=(4,), padding=(20,), groups=4)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_2): Sequential(
(0): Conv1d(64, 256, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_3): Sequential(
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=64)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_4): Sequential(
(0): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_5): Conv1d(512, 1, kernel_size=(3,), stride=(1,), padding=(1,))
)
)
(disc_1): Discriminator(
(discriminator): ModuleDict(
(layer_0): Sequential(
(0): ReflectionPad1d((7, 7))
(1): Conv1d(1, 16, kernel_size=(15,), stride=(1,))
(2): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_1): Sequential(
(0): Conv1d(16, 64, kernel_size=(41,), stride=(4,), padding=(20,), groups=4)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_2): Sequential(
(0): Conv1d(64, 256, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_3): Sequential(
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=64)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_4): Sequential(
(0): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_5): Conv1d(512, 1, kernel_size=(3,), stride=(1,), padding=(1,))
)
)
(disc_2): Discriminator(
(discriminator): ModuleDict(
(layer_0): Sequential(
(0): ReflectionPad1d((7, 7))
(1): Conv1d(1, 16, kernel_size=(15,), stride=(1,))
(2): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_1): Sequential(
(0): Conv1d(16, 64, kernel_size=(41,), stride=(4,), padding=(20,), groups=4)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_2): Sequential(
(0): Conv1d(64, 256, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_3): Sequential(
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=64)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_4): Sequential(
(0): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
(1): LeakyReLU(negative_slope=0.2, inplace=True)
)
(layer_5): Conv1d(512, 1, kernel_size=(3,), stride=(1,), padding=(1,))
)
)
)
(downsample): AvgPool1d(kernel_size=(4,), stride=(2,), padding=(1,))
)