-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_task_e.py
73 lines (55 loc) · 2.27 KB
/
train_task_e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from datasets import load_dataset
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torch.nn import functional as F
import dataset
import model
vocab, freq = dataset.SentenceDataset.load_vocab('./vocab.csv')
emb_matrix = model.load_embedding_matrix(vocab)
net = model.Net3(emb_matrix)
data = load_dataset("glue", "sst2")
train_sentences = data['train']['sentence']
training_data = dataset.SentenceDataset(data['train']['sentence'],
data['train']['label'],
128,
vocab)
val_data = dataset.SentenceDataset(data['validation']['sentence'],
data['validation']['label'],
128,
vocab)
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
val_dataloader = DataLoader(val_data, batch_size=64, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
for epoch in range(100): # loop over the dataset multiple times
running_loss = 0.0
for i, d in enumerate(train_dataloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, lens, labels = d
inputs = inputs.type(torch.int32)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 10 == 9: # print every 10 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 10:.3f}')
running_loss = 0.0
inputs, lens, labels = next(iter(val_dataloader))
inputs = inputs.type(torch.int32)
with torch.no_grad():
outputs = net(inputs)
loss = criterion(outputs, labels)
print(f"EPOCH1: Val LOSS - {loss}")
torch.save({
'epoch': epoch,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, f'./results/task_e/{epoch}.pt')