forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_discriminant_analysis.py
405 lines (343 loc) · 16.6 KB
/
linear_discriminant_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
Linear Discriminant Analysis
Assumptions About Data :
1. The input variables has a gaussian distribution.
2. The variance calculated for each input variables by class grouping is the
same.
3. The mix of classes in your training set is representative of the problem.
Learning The Model :
The LDA model requires the estimation of statistics from the training data :
1. Mean of each input value for each class.
2. Probability of an instance belong to each class.
3. Covariance for the input data for each class
Calculate the class means :
mean(x) = 1/n ( for i = 1 to i = n --> sum(xi))
Calculate the class probabilities :
P(y = 0) = count(y = 0) / (count(y = 0) + count(y = 1))
P(y = 1) = count(y = 1) / (count(y = 0) + count(y = 1))
Calculate the variance :
We can calculate the variance for dataset in two steps :
1. Calculate the squared difference for each input variable from the
group mean.
2. Calculate the mean of the squared difference.
------------------------------------------------
Squared_Difference = (x - mean(k)) ** 2
Variance = (1 / (count(x) - count(classes))) *
(for i = 1 to i = n --> sum(Squared_Difference(xi)))
Making Predictions :
discriminant(x) = x * (mean / variance) -
((mean ** 2) / (2 * variance)) + Ln(probability)
---------------------------------------------------------------------------
After calculating the discriminant value for each class, the class with the
largest discriminant value is taken as the prediction.
Author: @EverLookNeverSee
"""
from math import log
from os import name, system
from random import gauss, seed
from typing import Callable, TypeVar
# Make a training dataset drawn from a gaussian distribution
def gaussian_distribution(mean: float, std_dev: float, instance_count: int) -> list:
"""
Generate gaussian distribution instances based-on given mean and standard deviation
:param mean: mean value of class
:param std_dev: value of standard deviation entered by usr or default value of it
:param instance_count: instance number of class
:return: a list containing generated values based-on given mean, std_dev and
instance_count
>>> gaussian_distribution(5.0, 1.0, 20) # doctest: +NORMALIZE_WHITESPACE
[6.288184753155463, 6.4494456086997705, 5.066335808938262, 4.235456349028368,
3.9078267848958586, 5.031334516831717, 3.977896829989127, 3.56317055489747,
5.199311976483754, 5.133374604658605, 5.546468300338232, 4.086029056264687,
5.005005283626573, 4.935258239627312, 3.494170998739258, 5.537997178661033,
5.320711100998849, 7.3891120432406865, 5.202969177309964, 4.855297691835079]
"""
seed(1)
return [gauss(mean, std_dev) for _ in range(instance_count)]
# Make corresponding Y flags to detecting classes
def y_generator(class_count: int, instance_count: list) -> list:
"""
Generate y values for corresponding classes
:param class_count: Number of classes(data groupings) in dataset
:param instance_count: number of instances in class
:return: corresponding values for data groupings in dataset
>>> y_generator(1, [10])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> y_generator(2, [5, 10])
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> y_generator(4, [10, 5, 15, 20]) # doctest: +NORMALIZE_WHITESPACE
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
"""
return [k for k in range(class_count) for _ in range(instance_count[k])]
# Calculate the class means
def calculate_mean(instance_count: int, items: list) -> float:
"""
Calculate given class mean
:param instance_count: Number of instances in class
:param items: items that related to specific class(data grouping)
:return: calculated actual mean of considered class
>>> items = gaussian_distribution(5.0, 1.0, 20)
>>> calculate_mean(len(items), items)
5.011267842911003
"""
# the sum of all items divided by number of instances
return sum(items) / instance_count
# Calculate the class probabilities
def calculate_probabilities(instance_count: int, total_count: int) -> float:
"""
Calculate the probability that a given instance will belong to which class
:param instance_count: number of instances in class
:param total_count: the number of all instances
:return: value of probability for considered class
>>> calculate_probabilities(20, 60)
0.3333333333333333
>>> calculate_probabilities(30, 100)
0.3
"""
# number of instances in specific class divided by number of all instances
return instance_count / total_count
# Calculate the variance
def calculate_variance(items: list, means: list, total_count: int) -> float:
"""
Calculate the variance
:param items: a list containing all items(gaussian distribution of all classes)
:param means: a list containing real mean values of each class
:param total_count: the number of all instances
:return: calculated variance for considered dataset
>>> items = gaussian_distribution(5.0, 1.0, 20)
>>> means = [5.011267842911003]
>>> total_count = 20
>>> calculate_variance([items], means, total_count)
0.9618530973487491
"""
squared_diff = [] # An empty list to store all squared differences
# iterate over number of elements in items
for i in range(len(items)):
# for loop iterates over number of elements in inner layer of items
for j in range(len(items[i])):
# appending squared differences to 'squared_diff' list
squared_diff.append((items[i][j] - means[i]) ** 2)
# one divided by (the number of all instances - number of classes) multiplied by
# sum of all squared differences
n_classes = len(means) # Number of classes in dataset
return 1 / (total_count - n_classes) * sum(squared_diff)
# Making predictions
def predict_y_values(
x_items: list, means: list, variance: float, probabilities: list
) -> list:
"""This function predicts new indexes(groups for our data)
:param x_items: a list containing all items(gaussian distribution of all classes)
:param means: a list containing real mean values of each class
:param variance: calculated value of variance by calculate_variance function
:param probabilities: a list containing all probabilities of classes
:return: a list containing predicted Y values
>>> x_items = [[6.288184753155463, 6.4494456086997705, 5.066335808938262,
... 4.235456349028368, 3.9078267848958586, 5.031334516831717,
... 3.977896829989127, 3.56317055489747, 5.199311976483754,
... 5.133374604658605, 5.546468300338232, 4.086029056264687,
... 5.005005283626573, 4.935258239627312, 3.494170998739258,
... 5.537997178661033, 5.320711100998849, 7.3891120432406865,
... 5.202969177309964, 4.855297691835079], [11.288184753155463,
... 11.44944560869977, 10.066335808938263, 9.235456349028368,
... 8.907826784895859, 10.031334516831716, 8.977896829989128,
... 8.56317055489747, 10.199311976483754, 10.133374604658606,
... 10.546468300338232, 9.086029056264687, 10.005005283626572,
... 9.935258239627313, 8.494170998739259, 10.537997178661033,
... 10.320711100998848, 12.389112043240686, 10.202969177309964,
... 9.85529769183508], [16.288184753155463, 16.449445608699772,
... 15.066335808938263, 14.235456349028368, 13.907826784895859,
... 15.031334516831716, 13.977896829989128, 13.56317055489747,
... 15.199311976483754, 15.133374604658606, 15.546468300338232,
... 14.086029056264687, 15.005005283626572, 14.935258239627313,
... 13.494170998739259, 15.537997178661033, 15.320711100998848,
... 17.389112043240686, 15.202969177309964, 14.85529769183508]]
>>> means = [5.011267842911003, 10.011267842911003, 15.011267842911002]
>>> variance = 0.9618530973487494
>>> probabilities = [0.3333333333333333, 0.3333333333333333, 0.3333333333333333]
>>> predict_y_values(x_items, means, variance,
... probabilities) # doctest: +NORMALIZE_WHITESPACE
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2]
"""
# An empty list to store generated discriminant values of all items in dataset for
# each class
results = []
# for loop iterates over number of elements in list
for i in range(len(x_items)):
# for loop iterates over number of inner items of each element
for j in range(len(x_items[i])):
temp = [] # to store all discriminant values of each item as a list
# for loop iterates over number of classes we have in our dataset
for k in range(len(x_items)):
# appending values of discriminants for each class to 'temp' list
temp.append(
x_items[i][j] * (means[k] / variance)
- (means[k] ** 2 / (2 * variance))
+ log(probabilities[k])
)
# appending discriminant values of each item to 'results' list
results.append(temp)
return [result.index(max(result)) for result in results]
# Calculating Accuracy
def accuracy(actual_y: list, predicted_y: list) -> float:
"""
Calculate the value of accuracy based-on predictions
:param actual_y:a list containing initial Y values generated by 'y_generator'
function
:param predicted_y: a list containing predicted Y values generated by
'predict_y_values' function
:return: percentage of accuracy
>>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
... 1, 1 ,1 ,1 ,1 ,1 ,1]
>>> predicted_y = [0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0,
... 0, 0, 1, 1, 1, 0, 1, 1, 1]
>>> accuracy(actual_y, predicted_y)
50.0
>>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
... 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> predicted_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
... 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> accuracy(actual_y, predicted_y)
100.0
"""
# iterate over one element of each list at a time (zip mode)
# prediction is correct if actual Y value equals to predicted Y value
correct = sum(1 for i, j in zip(actual_y, predicted_y) if i == j)
# percentage of accuracy equals to number of correct predictions divided by number
# of all data and multiplied by 100
return (correct / len(actual_y)) * 100
num = TypeVar("num")
def valid_input(
input_type: Callable[[object], num], # Usually float or int
input_msg: str,
err_msg: str,
condition: Callable[[num], bool] = lambda x: True,
default: str = None,
) -> num:
"""
Ask for user value and validate that it fulfill a condition.
:input_type: user input expected type of value
:input_msg: message to show user in the screen
:err_msg: message to show in the screen in case of error
:condition: function that represents the condition that user input is valid.
:default: Default value in case the user does not type anything
:return: user's input
"""
while True:
try:
user_input = input_type(input(input_msg).strip() or default)
if condition(user_input):
return user_input
else:
print(f"{user_input}: {err_msg}")
continue
except ValueError:
print(
f"{user_input}: Incorrect input type, expected {input_type.__name__!r}"
)
# Main Function
def main():
""" This function starts execution phase """
while True:
print(" Linear Discriminant Analysis ".center(50, "*"))
print("*" * 50, "\n")
print("First of all we should specify the number of classes that")
print("we want to generate as training dataset")
# Trying to get number of classes
n_classes = valid_input(
input_type=int,
condition=lambda x: x > 0,
input_msg="Enter the number of classes (Data Groupings): ",
err_msg="Number of classes should be positive!",
)
print("-" * 100)
# Trying to get the value of standard deviation
std_dev = valid_input(
input_type=float,
condition=lambda x: x >= 0,
input_msg=(
"Enter the value of standard deviation"
"(Default value is 1.0 for all classes): "
),
err_msg="Standard deviation should not be negative!",
default="1.0",
)
print("-" * 100)
# Trying to get number of instances in classes and theirs means to generate
# dataset
counts = [] # An empty list to store instance counts of classes in dataset
for i in range(n_classes):
user_count = valid_input(
input_type=int,
condition=lambda x: x > 0,
input_msg=(f"Enter The number of instances for class_{i+1}: "),
err_msg="Number of instances should be positive!",
)
counts.append(user_count)
print("-" * 100)
# An empty list to store values of user-entered means of classes
user_means = []
for a in range(n_classes):
user_mean = valid_input(
input_type=float,
input_msg=(f"Enter the value of mean for class_{a+1}: "),
err_msg="This is an invalid value.",
)
user_means.append(user_mean)
print("-" * 100)
print("Standard deviation: ", std_dev)
# print out the number of instances in classes in separated line
for i, count in enumerate(counts, 1):
print(f"Number of instances in class_{i} is: {count}")
print("-" * 100)
# print out mean values of classes separated line
for i, user_mean in enumerate(user_means, 1):
print(f"Mean of class_{i} is: {user_mean}")
print("-" * 100)
# Generating training dataset drawn from gaussian distribution
x = [
gaussian_distribution(user_means[j], std_dev, counts[j])
for j in range(n_classes)
]
print("Generated Normal Distribution: \n", x)
print("-" * 100)
# Generating Ys to detecting corresponding classes
y = y_generator(n_classes, counts)
print("Generated Corresponding Ys: \n", y)
print("-" * 100)
# Calculating the value of actual mean for each class
actual_means = [calculate_mean(counts[k], x[k]) for k in range(n_classes)]
# for loop iterates over number of elements in 'actual_means' list and print
# out them in separated line
for i, actual_mean in enumerate(actual_means, 1):
print(f"Actual(Real) mean of class_{i} is: {actual_mean}")
print("-" * 100)
# Calculating the value of probabilities for each class
probabilities = [
calculate_probabilities(counts[i], sum(counts)) for i in range(n_classes)
]
# for loop iterates over number of elements in 'probabilities' list and print
# out them in separated line
for i, probability in enumerate(probabilities, 1):
print(f"Probability of class_{i} is: {probability}")
print("-" * 100)
# Calculating the values of variance for each class
variance = calculate_variance(x, actual_means, sum(counts))
print("Variance: ", variance)
print("-" * 100)
# Predicting Y values
# storing predicted Y values in 'pre_indexes' variable
pre_indexes = predict_y_values(x, actual_means, variance, probabilities)
print("-" * 100)
# Calculating Accuracy of the model
print(f"Accuracy: {accuracy(y, pre_indexes)}")
print("-" * 100)
print(" DONE ".center(100, "+"))
if input("Press any key to restart or 'q' for quit: ").strip().lower() == "q":
print("\n" + "GoodBye!".center(100, "-") + "\n")
break
system("cls" if name == "nt" else "clear")
if __name__ == "__main__":
main()