Skip to content

Latest commit

 

History

History
 
 

bigquery

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Python Client for Google BigQuery

Python idiomatic client for Google BigQuery

pypi versions

Quick Start

$ pip install --upgrade google-cloud-bigquery

Authentication

With google-cloud-python we try to make authentication as painless as possible. Check out the Authentication section in our documentation to learn more. You may also find the authentication document shared by all the google-cloud-* libraries to be helpful.

Using the API

Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google BigQuery (BigQuery API docs) solves this problem by enabling super-fast, SQL-like queries against append-only tables, using the processing power of Google's infrastructure.

Load data from CSV

import csv

from google.cloud import bigquery
from google.cloud.bigquery import SchemaField

client = bigquery.Client()

dataset = client.dataset('dataset_name')
dataset.create()  # API request

SCHEMA = [
    SchemaField('full_name', 'STRING', mode='required'),
    SchemaField('age', 'INTEGER', mode='required'),
]
table = dataset.table('table_name', SCHEMA)
table.create()

with open('csv_file', 'rb') as readable:
    table.upload_from_file(
        readable, source_format='CSV', skip_leading_rows=1)

Perform a synchronous query

# Perform a synchronous query.
QUERY = (
    'SELECT name FROM [bigquery-public-data:usa_names.usa_1910_2013] '
    'WHERE state = "TX"')
query = client.run_sync_query('%s LIMIT 100' % QUERY)
query.timeout_ms = TIMEOUT_MS
query.run()

for row in query.rows:
    print(row)

See the google-cloud-python API BigQuery documentation to learn how to connect to BigQuery using this Client Library.